Criteria

Text:
Display:

Results

Viewing 1 to 30 of 7573
2017-05-15 ...
  • May 15-16, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 10-11, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Advanced High Strength Steels (AHSS) are now commonly used in automotive body structural applications. The high strength of this grade classification is attractive to help reduce mass in the automotive body through reduction in thickness. Strength also supports improvements in safety requirements so that mass increases are minimized. In some specific grades of AHSS, energy absorption is possible in addition to the high strength. This course will review the definition and properties of AHSS and cover several common applications in automotive body structures.
2017-04-06
Event
This session provides a forum for researchers and application engineers to disseminate the knowledge and information gained in advanced high-strength and press-hardening steel development and applications in automotive structures, enabling light-weight and durable vehicles with improved safety.
2017-04-06
Event
This session provides a forum for researchers and application engineers to disseminate the knowledge and information gained in advanced high-strength and press-hardening steel development and applications in automotive structures, enabling light-weight and durable vehicles with improved safety.
2017-03-28
Technical Paper
2017-01-0283
Mohammad K. Alam, Navid Nazemi, Ruth Jill Urbanic, Syed Saqib, Afsaneh Edrisy
Abstract Laser cladding is a novel process of surface coating, and researchers in both academia and industry are developing additive manufacturing solutions for large, metallic components. There are many interlinked process parameters associated with laser cladding, which may have an impact on the resultant microhardness profile throughout the bead zone. A set of single bead laser cladding experiments were done using a 4 kW fiber laser coupled with a 6-axis robotic arm for 420 martensitic stainless steel powder. A design of experiments approach was taken to explore a wide range of process parameter settings. The goal of this research is to determine whether robust predictive models for hardness can be developed, and if there are predictive trends that can be employed to optimize the process settings for a given set of process parameters and microhardness requirements.
2017-03-28
Technical Paper
2017-01-0285
Navid Nazemi, Mohammad K. Alam, Ruth Jill Urbanic, Syed Saqib, Afsaneh Edrisy
Abstract Laser cladding is used to coat a surface of a metal to enhance the metallurgical properties at the surface level of a substrate. For surface cladding operations, overlapping bead geometry is required. Single bead analyses do not provide a complete representation of essential properties; hence, this research focuses on overlapping conditions. The research scope targets the coaxial laser cladding process specifically for P420 stainless steel clad powder using a fiber optic laser with a 4.3 mm spot size on a low/medium carbon structural steel plate (AISI 1018). Many process parameters influence the bead geometrical shape, and it is assumed that the complex temperature distributions within the process could cause subsequent large variations in hardness values. The bead overlap configurations experiments are performed with 40%, 50% and 60% bead overlaps for a three-pass bead formation.
2017-03-28
Technical Paper
2017-01-0351
Guofei Chen, Mingchao Guo
Abstract Advanced high strength steels (AHSS) have been extensively used in the automotive industry for vehicle weight reduction. Although AHSS show better parent metal fatigue performance, the influence of material strength on spot weld fatigue is insignificant. To overcome this drawback, structural adhesive can been used along with spot weld to form weld-bond joints. These joints significantly improve spot weld fatigue performance and provide high joint stiffness enabling down-gauge of AHSS structures. However, modeling the adhesive joints using finite element methods is a challenge due to the nonlinear behavior of the material. In this study, the formulation of cohesive element based on the traction-separation constitutive law was applied to predict the initiation and propagation of the failure mode in the adhesively bonded joints for lap shear and coach peel specimens subjected to quasi-static loadings.
2017-03-28
Technical Paper
2017-01-0376
Jianyong Liang, Jonathan Powers, Scott Stevens, Behrooz Shahidi
Abstract While Advanced High Strength Steels (AHSS) and the next generation AHSS grades offer improved crash safety and reduced weight for vehicles, the global stiffness and NVH performance are often compromised due to reduced material thickness. This paper discusses an advanced method of evaluating the joint effectiveness on contribution to global stiffness and NVH performance of vehicles. A stiffness contribution ratio is proposed initiatively in this research, which evaluates the current contribution of the joints to the global stiffness and NVH performance of vehicles. Another parameter, joint effectiveness factor, has been used to study the potential of each joint on enhancing the global stiffness. The critical joints to enhance the vehicle stiffness and NVH performance can be identified based on above two parameters, and design changes be made to those critical joints to improve the vehicle performance.
2017-03-28
Technical Paper
2017-01-0394
Junrui Li, Ruiyan Yang, Zhen Li, Changqing Du, Dajun Zhou, Lianxiang Yang
Abstract Advanced high-strength steel (AHSS) is gaining popularity in the automotive industry due to its higher final part strength with the better formability compares to the conventional steel. However, the edge fracture occurs during the forming procedure for the pre-strained part. To avoid the edge fracture that happens during the manufacturing, the effect of pre-strain on edge cracking limit needs to be studied. In this paper, digital image correlation (DIC), as an accurate optical method, is adopted for the strain measurement to determining the edge cracking limit. Sets of the wide coupons are pre-strained to obtain the samples at different pre-strain level. The pre-strain of each sample is precisely measured during this procedure using DIC. After pre-straining, the half dog bone samples are cut from these wide coupons. The edge of the notch in the half dog bone samples is created by the punch with 10% clearance for the distinct edge condition.
2017-03-28
Technical Paper
2017-01-0453
Zane Yang
Considered in this study by the use of finite element model is a unit of assembled stator and one-way clutch (OWC) housed in a test setup, where the inner chamber is maintained at a given elevated temperature while its exterior housing surfaces are exposed to the room temperature. The two key components of dissimilar metals are assembled through the conventional interference fitting at their interface surfaces to form a friction joint at the room temperature. Due to the difference in the thermal expansion coefficients of two dissimilar materials, the outer component of aluminum from this joint tends to expand more than the inner component of steel when the temperature rises, thus leading to a possible relaxation in joining connection at their interface.
2017-03-28
Technical Paper
2017-01-0476
Seiji Furusako, Masatoshi Tokunaga, Masanori Yasuyama
Abstract To reduce the weight of automobile bodies, application of high-strength steel sheets is expanding. Furthermore, middle and high carbon steels are expected to be used to lower the environmental impact and cost in the automobile steel sheet industry. However, it is necessary to enhance the joint strength of the steel sheets. In this study, hat-shaped components were made using resistance spot (RS) welding or arc spot (AS) welding on S45C steel sheets (including 0.44% carbon), 1.4 mm thickness and strength of 1180 MPa grade. A dynamic three-point bending test was conducted on the components and their crashworthiness was compared. Some RS welds fractured (separated) during the three-point bending test even though the diameter of the weld metal was increased to 5√t (t means thickness of the sheet); however, AS welds did not fracture.
2017-03-28
Journal Article
2017-01-1707
C. Matthew Enloe, Jason Coryell, Jeff Wang
Abstract Retained austenite stability to both mechanically induced transformation and athermal transformation is of great importance to the fabrication and in-vehicle performance of automotive advanced high strength steels. Selected cold-rolled advanced high strength steels containing retained austenite with minimum tensile strengths of 980 MPa and 1180 MPa were pre-strained to pre-determined levels under uniaxial tension in the rolling direction and subsequently cooled to temperatures as low as 77 K. Room temperature uniaxial tensile results of pre-strained and cooled steels indicate that retained austenite is stable to athermal transformation to martensite at all tested temperatures and pre-strain levels. To evaluate the combined effects of temperature and pre-strain on impact behavior, stacked Charpy impact testing was conducted on the same 980 MPa minimum tensile strength steel following similar pre-straining in uniaxial tension.
2017-03-28
Technical Paper
2017-01-0506
Xueyuan Nie, Jimi Tjong
Abstract Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
2017-03-28
Journal Article
2017-01-0478
Pai-Chen Lin, WeiNing Chen
Abstract Fatigue analysis of swept friction stir clinch (Swept-FSC) joints between 6061-T6 aluminum (Al) and S45C steel (Fe) sheets was conducted through experimental approaches. Before fatigue tests, a parametric study for the probe geometry of FSC tools was conducted in order to eliminate the hook structure inside the joint and improve the mechanical performance of the joint. Then a series of quasi-static and fatigue tests for Al/Fe Swept-FSC joints in lap-shear (LP) and cross-tension (CT) specimens were conducted. The fatigue data were recorded. The fatigue behavior of Al/Fe Swept-FSC joints in LP and CT specimens were examined through optical and scanning electron microscopes. Experimental results indicated that LP specimens have two failure modes, while CT specimens have only one failure mode. The dominant fatigue crack of each failure mode was identified.
2017-03-28
Technical Paper
2017-01-0474
Chady Khalil, Yannick Amosse, Guillaume Racineux
Abstract In this study, a proposed new 3-in-1 process using the magnetic pulse welding (MPW) for welding similar and dissimilar metals and for hybrid joining between FRC and metals is developed. Welding between (a) AA1199 sheets and XES, (b) AA1199 and XSG which is zinc coated steel, (c) 5754-aluminum alloy and XES were performed and (d) hybrid joint between PA66-glass-FRC and 5754-aluminum was achieved. SEM observations and EDX analysis for the weld interface between aluminum and steel showed where detectable very thin layers of intermetallics and the wavy interface pattern typical for impact welding was identified. X-Ray microtomography observation for the joining region in the FRC showed the good state of the composite structure after joining. 3D numerical simulation using LS-Dyna was used for the selection of the welding parameters. Quasi-static lap shear testing for the welds revealed a failure in the weak metal sheet and not in the weld.
2017-03-28
Technical Paper
2017-01-0472
Gyoko Oh
Abstract To prevent corrosion of the inlet part with aqueous ammonia injection, high chromium corrosion-resistant materials have been applied for welded joints of mufflers. Bending fatigue strength of welded joint samples of flange pipes was defined through fatigue experiments, modeling that high fluctuating stresses exist in the inlet and outlet flange pipes of a muffler caused by the vibration of a moving vehicle. Factors that caused fatigue to failure such as welding bead shape and metallographic structure were identified through local stress measurements, FEM stress simulations, microscopic observations, and SEM-EDS composition analyses. By comparing with sample A having a smaller flank angle and sample B having a larger flank angle, the results suggested that the difference of bending fatigue strengths at 200,000 cycles was 24% when based on nominal stress, and the difference was 10% when based on measured maximum stress.
2017-03-28
Technical Paper
2017-01-0471
Yasuo Kadoya, Yuki Oshino
Abstract By implementation of the core technology of capacitor-resistance welding, RingMash technology, metallic bonding, is developed to manufacture various components. It is the best suited for powertrain components such as transmission gears at low cost. Components made by RingMash are attributed to smaller and lighter transmission. The technology is recommended to manufacture co-axle male-female work pieces bonding, male side diameter is slightly larger than female side hole. RingMashing is a solid state bonding without melting work pieces. The actual RingMashing process is done in ambient atmosphere and does not use filler. RingMashing process itself takes only 100 milliseconds, results very minimum Heat-Affected Zone (HAZ), normally no more than 1 mm. The minimum HAZ achieves excellent structural integration for better performance of transmission. If two work pieces are same metals, spattering free bonding is possible.
2017-03-28
Journal Article
2017-01-0310
Wei Wu, Dajun Zhou, Donald Adamski, Darryl Young, Yu-Wei Wang
Abstract The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
2017-03-28
Journal Article
2017-01-0353
Matilde Scurria, Sinem Emre, Benjamin Möller, Rainer Wagener, Tobias Melz
Abstract Manganese sulfides (MnS) are nonmetallic, ductile inclusions with high melting temperature (1610 °C) which improve the machinability and retard the grain growth in steels, in addition of contributing to avoid cracking during hot working. In this paper, the effect of manganese sulfides on the fatigue life of the vanadium micro-alloyed forging steel 38MnVS6 is discussed. Force-controlled fatigue tests are performed on small sized specimens until the crack occurs. The fatigue life of the forged material, presented by Wöhler curves, is considerably reduced at high levels of the nominal stress amplitude compared to the wrought material. Moreover, it is evident that the presence of longer and thinner particles of MnS reduces the scatter band of Wöhler curves and decreases the fatigue strength of the material. This paper presents a first attempt to find a relation between the shape and content of manganese sulfides due to the forging process and the fatigue life of the material.
2017-03-28
Journal Article
2017-01-0372
Guang Cheng, Kyoo Sil Choi, Xiaohua Hu, Xin Sun
Abstract For multiphase advanced high strength steels (AHSS), the constituent phase properties play a crucial role in determining the overall mechanical behaviors. Therefore, it is important to accurately measure/estimate the constituent phase properties in the research of AHSS. In this study, a new nanoindentation-based inverse method that we developed was adopted in estimating the phase properties of a low alloy Quenching and Partitioning (Q&P) steel. A microstructure-based Finite Element (FE) model was also generated based on the Electron BackScatter Diffraction (EBSD) and Scanning Electron Microscopy (SEM) images of the Q&P steel. The phase properties estimated from nanoindentation were first compared with those estimated from in-situ High Energy X-Ray Diffraction (HEXRD) test and, then, employed in the generated FE model to examine whether they can be appropriately used as the input properties for the model.
2017-03-28
Journal Article
2017-01-0349
Thomas Seifert, Philipp von Hartrott, Kristopher Boss, Paul Wynthein
Abstract Cast iron materials are used as materials for cylinder heads for heavy duty internal combustion engines. These components must withstand severe cyclic mechanical and thermal loads throughout their service life. While high-cycle fatigue (HCF) is dominant for the material in the water jacket region, the combination of thermal transients with mechanical load cycles results in thermomechanical fatigue (TMF) of the material in the fire deck region, even including superimposed TMF and HCF loads. Increasing the efficiency of the engines directly leads to increasing combustion pressure and temperature and, thus, lower safety margins for the currently used cast iron materials or alternatively the need for superior cast iron materials. In this paper (Part I), the TMF properties of the lamellar graphite cast iron GJL250 and the vermicular graphite cast iron GJV450 are characterized in uniaxial tests and a mechanism-based model for TMF life prediction is developed for both materials.
2017-03-28
Journal Article
2017-01-0346
Radwan Hazime, Thomas Seifert, Jeremy Kessens, Frank Ju
Abstract A complete thermomechanical fatigue (TMF) life prediction methodology is developed for predicting the TMF life of cast iron cylinder heads for efficient heavy duty internal combustion engines. The methodology uses transient temperature fields as thermal loads for the non-linear structural finite-element analysis (FEA). To obtain reliable stress and strain histories in the FEA for cast iron materials, a time and temperature dependent plasticity model which accounts for viscous effects, non-linear kinematic hardening and tension-compression asymmetry is required. For this purpose a unified elasto-viscoplastic Chaboche model coupled with damage is developed and implemented as a user material model (USERMAT) in the general purpose FEA program ANSYS. In addition, the mechanism-based DTMF model for TMF life prediction developed in Part I of the paper is extended to three-dimensional stress states under transient non-proportional loading conditions.
2017-03-28
Journal Article
2017-01-0342
Benjamin Möller, Alessio Tomasella, Rainer Wagener, Tobias Melz
Abstract The cyclic material behavior is investigated, by strain-controlled testing, of 8 mm thick sheet metal specimens and butt joints, manufactured by manual gas metal arc welding (GMAW). The materials used in this investigation are the high-strength structural steels S960QL, S960M and S1100QL. Trilinear strain-life curves and cyclic stress-strain curves have been derived for the base material and the as-welded state of each steel grade. Due to the cyclic softening in combination with a high load level at the initial load cycle, the cyclic stress-strain curve cannot be applied directly for a fatigue assessment of welded structures. Therefore, the transient effects have been analyzed in order to describe the time-variant material behavior in a more detailed manner. This should be the basis for the enhancement of the fatigue life estimation.
2017-03-28
Journal Article
2017-01-0399
Mohammed Yusuf Ali, Wei-Jen Lai, Nikhil Kotasthane, Jagadish Sorab, Chari Sever, Jwo Pan
Abstract In this paper, the results of finite element analyses for nodular cast irons with different volume fractions of graphite particles based on an axisymmetric unit cell model under uniaxial compression and tension are presented. The experimental compressive stress-strain data for a nodular cast iron with the volume fraction of graphite particles of 4.5% are available for use as the baseline material data. The elastic-plastic stress-strain relation for the matrix of the cast iron is estimated based on the experimental compressive stress-strain curve of the cast iron with the rule of mixture. The elastic-plastic stress-strain relation for graphite particles is obtained from the literature. The compressive stress-strain curve for the cast iron based on the axisymmetric unit cell model with the use of the von Mises yield function was then obtained computationally and compared well with the compressive stress-strain relation obtained from the experiment.
2017-03-28
Technical Paper
2017-01-1461
Sanketh Gowda, Anindya Deb, Goutham Kurnool, Clifford Chou
Abstract Adhesively bonded steel hat section components have been experimentally studied in the past as a potential alternative to traditional hat section components with spot-welded flanges. One of the concerns with such components has been their performance under axial impact loading as adhesive is far more brittle as compared to a spot weld. However, recent drop-weight impact tests have shown that the energy absorption capabilities of adhesively bonded steel hat sections are competitive with respect to geometrically similar spot-welded specimens. Although flange separation may take place in the case of a specimen employing a rubber toughened epoxy adhesive, the failure would have taken place post progressive buckling and absorption of impact energy.
Viewing 1 to 30 of 7573

Filter

  • Range:
    to:
  • Year: