Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3302
2015-04-29 ...
  • April 29-May 1, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 26-28, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Safety continues to be one of the most important factors in motor vehicle design, manufacture and marketing. This seminar provides a comprehensive overview of these critical automotive safety considerations: injury and anatomy; human tolerance and biomechanics; occupant protection; testing; and federal legislation. The knowledge shared at this seminar will enable attendees to be more aware of safety considerations and to better understand and interact with safety experts. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 18 Continuing Education Units (CEUs).
2015-04-22
Event
Visual perception continues to be a critical aspect of overall driver performance. This session welcomes paper offers highlighting new developments designed to provide better support for driver rearward vision, better understanding of how to measure light and its effects on drivers’ eyes, and better understanding of how drivers accomplish the visually difficult task of negotiating intersections.
2015-04-21
Event
The Safety Test Methodology session in 2015 SAE Congress presents the following safety related topics: (1) A protection mechanism for rear occupant protection, (2) Analysis of load cell data from NHTSA-research oblique test, (3) An apparatus for safety belt testing, (4) Component development in PU foam and GFRP, (5) Evaluation of airbag electronic sensing system performance, and 96) Study of brake burnishing effect on automatic emergency braking performance.
2015-04-14
Technical Paper
2015-01-1482
Bisheshwar Haorongbam, Anindya Deb, Clifford Chou
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
2015-04-14
Technical Paper
2015-01-1705
Miguel Hurtado, Amine Taleb-Bendiab, Julien Moizard, Patrice M. Reilhac, Heinz Mattern
Current market trend indicates an increased interest in replacing mirrors by camera monitoring systems (CMS) to reduce CO2 emissions while at the same time improve driver visibility in future cars with a more aerodynamic profile. This improvement in visibility is expected to be more beneficial during the night or under extreme weather conditions. A CMS is an advanced system composed of an electronic imager, a display, and an intelligent electronic control unit. The CMS is intended to provide at least the same level of functionality of mandatory and legally prescribed interior and exterior mirrors in vehicles as specified in various international regulations and standards such as FMVSS 111 and SAE J985. Such system must take into consideration not only the required external field of view (FoV), but also the physical constraints of the human operator, i.e. visual acuity. This captured information is subsequently displayed to the driver inside the cockpit.
2015-04-14
Technical Paper
2015-01-0215
Reena Kumari Behera, Smita Nair
Redundancy plays a key role in increasing the computation time in case of most vision based systems. In vision based applications, the images captured from the camera are processed pixel by pixel in order to get the desired information. There is plenty of redundant data in most of the images. Removal of this unwanted data would help in increasing the processing time considerably. This paper presents a simple yet novel approach to remove unwanted data from a given image. The proposed work focuses on clutter removal from outdoor scenes. More specifically, this approach would be more applicable to Advanced Driver Assistance Systems (ADAS). An outdoor scene captured consists of two main parts a) ground region consisting of the road area and other lane markings especially white or yellow in color. b) The background region consisting of various structures, trees, sky etc. The definition of unwanted regions depends on the application.
2015-04-14
Technical Paper
2015-01-1424
Jeffrey Croteau, Charles L. Crosby, Micky Marine, Andrew Kwasniak
Bollard systems are often used to separate errant vehicular travel from pedestrian and bicycle traffic. A variety of bollard systems are available for this function that includes varying installations, functional design, and protection levels. The security-type bollards are primarily used at high security locations (e.g. military bases and other government installations) around the world. While a test protocol exists for testing and rating security bollards, no such protocol or recommended practices/standards currently exists for non-security-type bollards. Non-security, concrete filled bollards are commonly used by cities/states, local government organizations, and the private sector to be used as “perceived impediments” to protect against slow moving vehicles. There is a general lack of publically available test data to evaluate these non-security bollards and conventional installation procedures.
2015-04-14
Technical Paper
2015-01-0312
Jiji Gangadharan, Shanmugaraj Mani, Krishnan kutty
Advanced driver assistance systems have become an inevitable part of most of the modern cars. Their use is mandated by regulations in some cases; and in other cases where vehicle owners have become more safety conscious. Vision / camera based ADAS systems are widely in use today. However, it is to be noted that the performance of these systems depends on the quality of the image/video captured by the camera. Low illumination is one of the most important factors which degrade the image quality. In order to improve the system performance under low light condition, it is required to first enhance the input images/frames. In this paper, an image enhancement algorithm is proposed that would automatically enhance images to a near ideal condition. This is accomplished by mapping features taken from images acquired under ideal illumination conditions on to the target low illumination images/frames.
2015-04-14
Technical Paper
2015-01-0564
Sung wook Moon, Byunghyun Kang, Jaeyoung Lim, Byoung-Ho Choi
In a car accident involving pedestrians, head injury occurs very frequently as head of the pedestrian hits the windshield. The head injury criterion (HIC) obtained through the windshield impact test is used to evaluate pedestrian injury and car manufacturers are trying to meet the criterion and lightweight at the same time. However, there are some difficulties in the windshield impact test like a large scatter of the test data or windshield shape-dependent property of the test. These problems make it very difficult to obtain the meaningful result from single test and thus, test should be done several times. In this study, lab-scale windshield impact test is done by using modified Instrumented dart impact (IDI) tester. Test was carried out by switching test conditions like impact speed, size of the headform and specimen thickness.
2015-04-14
Technical Paper
2015-01-1479
Adria Ferrer, Eduard Infantes
In September 2009 the National Highway Traffic Safety Administration (NHTSA) published a report that investigated the incidence of fatalities to belted non-ejected occupants in frontal crashes involving late-model vehicles. The report concluded that after exceedingly severe crashes, the largest number of fatalities occurred in crashes involving poor structural engagement between the vehicle and its collision partner, such as corner impacts, oblique crashes, or impacts with narrow objects. In response to these findings, NHTSA designed and developed a test procedure intended to mitigate the risk of injuries and fatalities related to motor vehicle crashes involving poor structural engagement. This research demonstrated that an offset impact between a moving deformable barrier (RMDB) and a stationary vehicle at a 15º angle can reproduce vehicle crush, occupant kinematics, and risk of injury seen in vehicle-to-vehicle crashes.
2015-04-14
Technical Paper
2015-01-1484
Daniel E. Toomey, Eric S. Winkel, Ramnarain Krishnaswami
The evolution of airbag sensing system design has been rapid as electromechanical sensors used in earlier front airbag applications have been replaced by multi-point electronic sensors used to discriminate collision mechanics for potential airbag deployment in front, side and rollover accidents. In addition to multi-point electronic sensors, advanced airbag systems incorporate a variety of state sensors such as seat belt use status, seat track location, and occupant size classification that are taken into consideration by airbag system algorithms and occupant protection deployment strategies. Historically, traditional reconstruction methods and full scale vehicle crash testing were the primary means available to evaluate the field performance of passenger vehicle airbag systems. Electronic sensing systems have allowed for the advent of electronic data recorders (EDRs), which over the past decade, have provided increasingly more information related to airbag deployment events.
2015-04-14
Technical Paper
2015-01-1485
Jiri Kral, Theresa Kondel, Mark Morra, Stephen Cassatta, Peter Bidolli, Patrick Stebbins, Vikas Joshi
A new apparatus for testing modern safety belt systems was developed. Its design, dynamic behavior and test procedure are described. A number of tests have been conducted using this apparatus. These tests allowed identification of key performance parameters of pretensioners and load limiting retractors which are relevant to occupant protection in crash environment. Good test repeatability was observed, which allows comparison of different safety belt designs. The apparatus may be used for better specification and verification of safety belt properties on subsystem level as well as for validation of CAE models of safety belts used in simulations of occupant response to crash.
2015-04-14
Technical Paper
2015-01-0578
Wei Li, Yi-Pen Cheng, Lisa Furton
Finite element dummy models have been more and more widely applied in virtual development of occupant protection system across the automotive industry due to their predictive capabilities. H305 dyna dummy model is a finite element representative of the Hybrid III small female dummy, which is designed to represent the lower extreme of the United States adult population. Lower extremities are the leading injured body region and the risk of lower limb injuries is significant in all front crash impacts. The tibia index is a very important injury criteria to be predicted during frontal impact occupant simulations for FMVSS 208 and IIHS. A common issue in application of the dummy model is that it often over predicts lower tibia loading (forces and/or moments) and in turn generate unrealistically higher tibia indices, when compared against corresponding physical tests. In this paper, a few factors are analyzed, which affect achieving good tibia loading predictions.
2015-04-14
Technical Paper
2015-01-0318
Sonu Thomas, Krishnan kutty, Vinuchackravarthy Senthamilarasu
Dense depth estimation is a critical application in the field of robotics and machine vision where the depth perception is essential. Unlike traditional approaches which use expensive sensors such as LiDAR (Light Detection and Ranging) devices or stereo camera setup, the proposed approach for depth estimation uses a single camera mounted on a rotating platform. This proposed setup is an effective replacement to usage of multiple cameras, which provide around view information required for some operations in the domain of autonomous vehicles and robots. Dense depth estimation of local scene is performed using the proposed setup. This is a novel, however challenging task because baseline distance between camera positions inversely affect common regions between images. The proposed work involves dense two view reconstruction and depth map merging to obtain a reliable large dense depth map.
2015-04-14
Technical Paper
2015-01-0213
Vinuchackravarthy Senthamilarasu, Anusha Baskaran, Krishnan kutty
In the research field of automotive systems, Advanced Driver Assistance Systems (ADAS) are gaining of paramount importance. As significance for such systems increase, the challenges associated with it also increases. These challenges can arise due to technology, human factors, or due to nature (haze, fog etc.) In terms of visibility for the drivers as well as in vision based ADAS, haze formation in the atmosphere poses the challenging problem. In this paper, the proposed method addresses a novel technique of enhancing the quality in terms of visibility and visual perception of the haze affected images. Using HSV color space and the haze model, the haze affected images are recuperated. The proposed procedure involves retaining of hue (H) and scaling of saturation (S) value of each pixel between the haze input and de-hazed output images. In addition, a simple method for manipulating the ‘V’ space to de-haze the input image is also proposed.
2015-04-14
Technical Paper
2015-01-1704
Dee Kivett, John Smith
Several emerging technologies hold great promise to improve the 360-degree awareness of the heavy vehicle driver. However, current industry-standard evaluation methods do not measure all the comprehensive factors contributing to the overall effectiveness of such systems. As a result, industry is challenged to evaluate new technologies in a way that is objective and allows the comparison of different systems in a consistent manner. This research aims to explore the methods currently in use, identify relevant factors not presently incorporated in standard procedures, and recommend best practices to accomplish an overall measurement system that can quantify performance beyond simply the field of view of a driver visibility system. We introduce a new metric, “Clarity of View,” that incorporates several important factors for visibility systems including: gap acceptance, response time, and behavior accuracy.
2015-04-14
Technical Paper
2015-01-0310
Danymol R, Krishnan kutty
Camera sensors that are made of silicon photodiodes, used in ordinary digital cameras are sensitive to visible as well as NIR wavelength. However, since the human vision is sensitive only in the visible region, a hot mirror/infrared blocking filters are used in cameras. Certain complimentary attributes of NIR data are, therefore, lost in this process. RGB and NIR images are captured in entirely two different spectra/wavelength, thereby retaining different information. In this paper, an attempt is made to estimate an NIR image from a given optical image. This was undertaken using the compressed sensing framework. The NIR data estimation is formulated as an image recovery problem in compressed sensing. The NIR data is considered as missing pixel information and its approximation is done during the image recovery phase. Thus for a given optical image, with NIR data being considered as missing information, the recovered NIR data gives the corresponding NIR image.
2015-04-14
Technical Paper
2015-01-1437
Tony R. Laituri, Raed El-jawahri, Scott Henry, Kaye Sullivan
Various risk curves for head injury potential were assessed theoretically relative to field data. Specifically, two AIS2+ risk curves were studied: the HIC15-based risk curve from Mertz (1997) and the provisional, BRIC-based risk curve from Takhounts et al. (2013). These two risk curves were used to estimate attendant injury potential for belted drivers in full-engagement frontal crashes in the National Automotive Sampling System (NASS). The occupant responses pertaining to those crashes were estimated from representative math models, and the risk curves were used to convert event responses into event risks. The assessment was conducted from two perspectives: aggregate (0-56 kph) and a point-estimate (56 kph, barrier-like). Finally, the point-estimate assessment was supplemented by considering corresponding laboratory tests. The results from HIC15-based risk curve were understated, whereas the results from the BRIC-based risk curve were overstated.
Viewing 1 to 30 of 3302

Filter

  • Range:
    to:
  • Year: