Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Assessment of Condensation Particle Counter-Based Portable Solid Particle Number System for Applications with High Water Content in Exhaust

2024-04-22
2024-01-5048
The Particle Number–Portable Emission Measurement System (PN-PEMS) came into force with Euro VI Phase E regulations starting January 1, 2022. However, positive ignition (PI) engines must comply from January 1, 2024. The delay was due to the unavailability of the PN-PEMS system that could withstand high concentrations of water typically present in the tailpipe (TP) of CNG vehicles, which was detrimental to the PN-PEMS systems. Thus, this study was designed to evaluate the condensation particle counter (CPC)-based PN-PEMS measurement capabilities that was upgraded to endure high concentration of water. The PN-PEMS measurement of solid particle number (SPN23) greater than 23 nm was compared against the laboratory-grade PN systems in four phases. Each phase differs based upon the PN-PEMS and PN system location and measurements were made from three different CNG engines. In the first phase, systems measured the diluted exhaust through constant volume sampler (CVS) tunnel.
Technical Paper

Performance Comparison Analysis between Biodiesel and Diesel over a Commercial DOC Catalyst

2024-04-09
2024-01-2707
Biodiesel is a promising alternative to traditional diesel fuel due to its similar combustion properties to diesel and lower carbon emissions on a well-to-wheel basis. However, combusting biodiesel still generates hydrocarbon (HC), CO, NOx and particulate matter (PM) emissions, similar to those from traditional diesel fuel usage. Therefore, aftertreatment systems will be required to reduce these emissions to meet increasingly stringent emission regulations to minimize the impact to the environment. Diesel oxidation catalysts (DOC) are widely used in modern aftertreatment systems to convert unburned HC and CO, to partially convert NO to NO2 to enhance downstream selective catalytic reaction (SCR) catalyst efficiency via fast SCR and to periodically clean-up DPF via controlled soot oxidation. In this work, we focus on the performance difference between biodiesel and diesel over a commercial DOC catalyst to identify the knowledge gap during the transition from diesel fuel to biodiesel.
Technical Paper

Sulfur Impact on Methane Steam Reforming over the Stoichiometric Natural Gas Three-Way Catalyst

2024-04-09
2024-01-2633
The steam reforming of CH4 plays a crucial role in the high-temperature activity of natural gas three-way catalysts. Despite existing reports on sulfur inhibition in CH4 steam reforming, there is a limited understanding of sulfur storage and removal dynamics under various lambda conditions. In this study, we utilize a 4-Mode sulfur testing approach to elucidate the dynamics of sulfur storage and removal and their impact on three-way catalyst performance. We also investigate the influence of sulfur on CH4 steam reforming by analyzing CH4 conversions under dithering, rich, and lean reactor conditions. In the 4-Mode sulfur test, saturating the TWC with sulfur at low temperatures emerges as the primary cause of significant three-way catalyst performance degradation. After undergoing a deSOx treatment at 600 °C, NOx conversions were fully restored, while CH4 conversions did not fully recover.
Technical Paper

An Approach for Incorporating Learning into System Design: System Level Assessment Methodology

2023-09-05
2023-01-1517
Shafaat and Kenley in 2015 identified the opportunity to improve System Engineering Standards by incorporating the design principle of learning. The System Level Assessment (SLA) Methodology is an approach that fulfills this need by efficiently capturing the learnings of a team of subject matter experts in the early stages of product system design. By gathering expertise, design considerations are identified that when used with market and business requirements improve the overall quality of the product system. To evaluate the effectiveness of this approach, the methodology has been successfully applied over 400 times within each realm of the New Product Introduction process, including most recently to a Technology Development program (in the earliest stages of the design process) to assess the viability of various electrification technologies under consideration by an automotive Tier 1 supplier.
Technical Paper

Efficient Design of Automotive Structural Components via De-Homogenization

2023-04-11
2023-01-0026
In the past decades, automotive structure design has sought to minimize its mass while maintaining or improving structural performance. As such, topology optimization (TO) has become an increasingly popular tool during the conceptual design stage. While the designs produced by TO methods provide significant performance-to-mass ratio improvements, they require considerable computational resources when solving large-scale problems. An alternative for large-scale problems is to decompose the design domain into multiple scales that are coupled with homogenization. The problem can then be solved with hierarchical multiscale topology optimization (MSTO). The resulting optimal, homogenized macroscales are de-homogenized to obtain a high-fidelity, physically-realizable design. Even so MSTO methods are still computationally expensive due to the combined costs of solving nested optimization problems and performing de-homogenization.
Technical Paper

The Influences of Testing Conditions on DOC Light-Off Experiments

2023-04-11
2023-01-0372
Diesel oxidation catalyst (DOC) is one of the critical catalyst components in modern diesel aftertreatment systems. It mainly converts unburned hydrocarbon (HC) and CO to CO2 and H2O before they are released to the environment. In addition, it also oxidizes a portion of NO to NO2, which improves the NOx conversion efficiency via fast SCR over the downstream selective catalytic reduction (SCR) catalyst. HC light-off tests, with or without the presence of NOx, has been typically used for DOC evaluation in laboratory. In this work, we aim to understand the influences of DOC light-off experimental conditions, such as initial temperature, initial holding time, HC species, with or without the presence of NOx, on the DOC HC light-off behavior. The results indicate that light-off test with lower initial temperature and longer initial holding time (at its initial temperature) leads to higher DOC light-off temperature.
Technical Paper

Experimental and Modeling Study on the Thermal Aging Impact on the Performance of the Natural Gas Three-Way Catalyst

2023-04-11
2023-01-0375
The prediction accuracy of a three-way catalyst (TWC) model is highly associated with the ability of the model to incorporate the reaction kinetics of the emission process as a lambda function. In this study, we investigated the O2 and H2 concentration profiles of TWC reactions and used them as critical inputs for the development of a global TWC model. We presented the experimental data and global kinetic model showing the impact of thermal degradation on the performance of the TWC. The performance metrics investigated in this study included CH4, NOx, and CO conversions under lean, rich, and dithering light-off conditions to determine the kinetics of oxidation reactions and reduction/reforming/water-gas shift reactions as a function of thermal aging. The O2 and H2 concentrations were measured using mass spectrometry to track the change in the oxidation state of the catalyst and to determine the mechanism of the reactions under these light-off conditions.
Journal Article

Laboratory sulfation of an ammonia slip catalyst with a real-world SO2 concentration

2023-04-11
2023-01-0380
Upcoming, stricter diesel exhaust emissions standards will likely require aftertreatment architectures with multiple diesel exhaust fluid (DEF) introduction locations. Managing NH3 slip with technologies such as an ammonia slip catalyst (ASC) will continue to be critical in these future aftertreatment systems. In this study, we evaluate the impact of SO2 exposure on a state-of-the-art commercially available ASC. SO2 is co-fed at 0.5 or 3 ppmv to either approximate or accelerate a real-world exhaust SO2 impact. ASC performance during sulfur co-feeding is measured under a wide variety of simulated real-world conditions. Results indicate that the loss of NO conversion during SCR is dependent on the cumulative SO2 exposure, regardless of the inlet SO2 concentration. Meanwhile, N2O formation under SCR conditions is nonlinearly affected by SO2 exposure, with formation increasing during 0.5 ppmv SO2 exposure but decreasing in the presence of 3 ppmv SO2.
Technical Paper

Impact of Chemical Contaminants on Stoichiometric Natural Gas Engine Three-Way Catalysts with High Mileage History

2022-03-29
2022-01-0542
Stoichiometric natural gas engines with three-way catalysts emit less NOx and CH4 due to their higher efficiency compared to lean-burn natural gas engines. Although hydrothermal aging of three-way catalysts has been extensively studied, a deeper understanding beyond hydrothermal aging is needed to explain real-world performance, especially for natural gas engines with near-zero NOx emissions. In this investigation, field-aged three-way catalysts were characterized to identify the contribution of chemical aging to their overall performance. It was found that the sulfur species on the field-aged TWCs were entirely distributed along the catalyst length, showing a decreasing trend, whereas phosphorous contamination was mainly observed at the inlet section of the three-way catalysts, and the phosphorous concentration declined sharply along the axial length.
Journal Article

Detection of Pinion Grinding Defects in a Nested Planetary Gear System using a Narrowband Demodulation Approach

2021-08-31
2021-01-1100
Nested planetary gear trains, which consist of two integrated co-axial single-stage planetary gearsets, have recently been widely implemented in automobile transmissions and various other applications. In the current study, a non-destructive vibrational and acoustical monitoring technique is developed to detect a common type of gear grinding defect for a complex nested gear train structure. A nested gear train which has an unground pinion with unpolished teeth profile is used to exemplify the developed methodology. An experimental test stand with an open and vertical mounting configuration has been designed to acquire both vibrational and acoustical data. The measured data are investigated using several signal processing techniques to identify unground pinions in the gear system. A general frequency spectrum analysis is performed initially, which is then followed by a peak finding algorithm to identify the peaks in the spectrum.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Journal Article

High-Speed 3D Optical Sensing and Information Processing for Automotive Industry

2021-04-06
2021-01-0303
This paper explains the basic principles behind two platform technologies that my research team has developed in the field of optical metrology and optical information processing: 1) high-speed 3D optical sensing; and 2) real-time 3D video compression and streaming. This paper will discuss how such platform technologies could benefit the automotive industry including in-situ quality control for additive manufacturing and autonomous vehicle systems. We will also discuss some of other applications that we have been working on such as crime scene capture in forensics.
Journal Article

Impact of Water Vapor on the Performance of a Cu-SSZ-13 Catalyst under Simulated Diesel Exhaust Conditions

2021-04-06
2021-01-0577
Cu-SSZ-13 selective catalytic reduction (SCR) catalysts are broadly applied in diesel aftertreatment systems for the catalytic conversion of oxides of nitrogen (NO + NO2). Diesel exhaust contains a wide range of water vapor concentrations depending on the operating condition. In this study, we evaluate the impact of water vapor on the relevant SCR catalytic functions including NOx conversion, NO oxidation, NH3 oxidation, and N2O formation under both standard and fast SCR conditions. Reactor-based experiments are conducted in the presence and absence of water vapor. Results indicate that water vapor can have both a positive and negative impact on low temperature NOx conversion for standard SCR reaction. At low inlet NOx concentrations, the presence of water vapor has a negative effect on NOx conversion, whereas, at high inlet NO concentrations, water vapor improves NOx conversion.
Technical Paper

Heavy-Duty Engines Exhaust Sub-23 nm Solid Particle Number Measurements

2021-02-24
2021-01-5024
The measurement of solid particles down to 10 nm is being incorporated into global technical regulations (GTR). This study explores the measurement of solid particles below 23 nm by using both current and proposed particle number (PN) systems having different volatile particle remover (VPR) methodologies and condensation particle counter (CPC) cutoff diameters. The measurements were conducted in dynamometer test cells using ten diesel and eight natural gas (NG) engines that were going under development for a variety of global emission standards. The PN systems measured solid PN from more than 700 test cycles. The results from the preliminary campaign showed a 10-280% increase in PN emissions with the inclusion of particles below 23 nm.
Technical Paper

Assessment of In-Use Solid Particle Number Measurement Systems against Laboratory Systems

2020-10-01
2020-01-5074
Euro VI regulations in Europe and its adaptors recently extended the regulation to include Particle Number (PN) for in-use conformity testing. However, the in-use PN Portable Emissions Measurement System (PEMS) is still evolving and has higher measurement uncertainty when compared against laboratory-grade PN systems. The PN systems for laboratory require a condensation particle counter (CPC). Thus, in this study, a CPC-based Horiba PN-PEMS was selected for performance evaluation against the laboratory-grade PN systems. This study was divided into four phases. The first two phases’ measurements were conducted from the Constant Volume Sampler (CVS) tunnel where the brake-specific particle number (BSPN) levels of 1010-12 and 1013 (#/bhp-h) were measured from the engines equipped with diesel particulate filter (DPF) and without DPF, respectively. In comparison against PN systems, PN-PEMS, on average, reported 14% lower BSPN from 82 various tests for the BSPN levels of 1010-11.
Technical Paper

Impact of Using Low Thermal Mass Turbine Housing on Exhaust Temperature with Implication on Aftertreatment Warm-Up Benefit for Emissions Reduction

2020-09-02
2020-01-5083
The present study examines the impact of using low thermal mass (LTM) turbine housing designs on the transient characteristics of the turbine outlet temperature for a light-duty diesel standard certification cycle (FTP75). For a controlled exhaust flow, the turbine outlet temperature will directly determine the impact on an aftertreatment system warm-up from a cold state, typical of engine-off and engine idling conditions. The performance of the aftertreatment system such as a Selective Catalytic Reduction (SCR) system is highly dependent on how quickly it warms up to its desirable temperature to be able to convert the harmful oxides of Nitrogen (NOx) to gaseous Nitrogen. Previous works have focused on mostly insulating the exhaust manifold and turbine housing to conserve the heat going into the aftertreatment system. The use of LTM turbine housing has not been previously considered as a means for addressing this requirement.
Journal Article

Development and Demonstration of a Class 6 Range-Extended Electric Vehicle for Commercial Pickup and Delivery Operation

2020-04-14
2020-01-0848
Range-extended hybrids are an attractive option for medium- and heavy-duty commercial vehicle fleets because they offer the efficiency of an electrified powertrain with the driving range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture. Under a U.S. Department of Energy (DOE)-funded project for Medium- and Heavy-Duty Vehicle Powertrain Electrification, Cummins has developed a plug-in hybrid electric Class 6 truck with a range-extending engine designed for pickup and delivery application.
Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

2019-06-05
2019-01-1533
Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.
Technical Paper

Multi-Domain Optimization for Fuel Economy Improvement of HD Trucks

2019-04-02
2019-01-0312
Fuel usage negatively impacts the environment and is a significant portion of operational costs of moving freight globally. Reducing fuel consumption is key to lessening environmental impacts and maximizing freight efficiency, thereby increasing the profit margin of logistic operators. In this paper, fuel economy improvements of a cab-over style 49T heavy duty Foton truck powered by a Cummins 12-liter engine are studied and systematically applied for the China market. Most fuel efficiency improvements are found within the vehicle design when compared to opportunities available at the engine level. Vehicle design (improved aerodynamics), component selection/matching (low rolling resistance tires), and powertrain electronic features integration (shift schedule/electronic trim) offer the largest opportunities for lowering fuel consumption.
Technical Paper

Structural Optimization of Thin-Walled Tubular Structures for Progressive Collapse Using Hybrid Cellular Automaton with a Prescribed Response Field

2019-04-02
2019-01-0837
The design optimization of thin-walled tubular structures is of relevance in the automotive industry due to their low cost, ease of manufacturing and installation, and high-energy absorption efficiency. This study presents a methodology to design thin-walled tubular structures for crashworthiness applications. During an impact, thin-walled tubular structures may exhibit progressive collapse/buckling, global collapse/buckling, or mixed collapse/buckling. From a crashworthiness standpoint, the most desirable collapse mode is progressive collapse due to its high-energy absorption efficiency, stable deformation, and low peak crush force (PCF). In the automotive industry, thin-walled components have complex structural geometries. These complexities and the several loading conditions present in a crash reduce the possibility of progressive collapse. The Hybrid Cellular Automata (HCA) method has shown to be an efficient continuum-based approach in crashworthiness design.
X