Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Study on Evaluation Method of Fuel Economy, Electric Power Consumption and Emissions of Electrified Heavy-duty Vehicle by Using “X in the Loop Simulation”

2021-09-21
2021-01-1253
To reduce carbon dioxide emissions, the use of vehicles operating on electrification technology, such as plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is rapidly increasing. A similar trend also exists in the field of heavy-duty vehicles, such as trucks and buses. When evaluating—via the certification test method—the fuel efficiency, electricity efficiency, and exhaust gas emission of heavy-duty vehicles that have many batteries, the powertrain, including the batteries, is modeled and investigated. However, such modeling is difficult because batteries deteriorate, and the ambient temperature fluctuates during vehicle operation. To resolve this issue, we developed a new evaluation method that enables real-time cooperative control of actual batteries and hardware-in-the-loop simulation (HILS).
Technical Paper

Study on Hybrid Control Methods of Heavy-Duty Plug-In Hybrid Vehicle for Improving Fuel Economy and Emissions

2020-09-15
2020-01-2259
Fuel consumption and exhaust gas emission regulations are being tightened around the world year by year. Electric vehicles are needed to reduce carbon dioxide emissions. Especially, Plug-in hybrid heavy-duty vehicles (PHEVs) are expected to become widespread. PHEVs enable all-electric modes, as well as hybrid modes, using both engines and electric motors, but the control system significantly affects the characteristics of fuel consumption and gas emission. In this study, we used new testing machine (we call extended HILS) to analyze the fuel consumption and gas emission for different plug-in hybrid control systems and investigated the optimal control method for PHEVs.
Technical Paper

Estimation of Fuel Economy and Emissions for Heavy-Duty Diesel Plug-In Hybrid Vehicle with Electrical Heating Catalyst System

2017-10-08
2017-01-2207
Next-generation vehicles which include the Electric Vehicles, the Hybrid Electric Vehicles and the Plug-in Hybrid Electric Vehicles are researched and expected to reduce carbon dioxide (CO2) emission in the future. In order to reduce the emissions of the heavy-duty diesel plug-in hybrid electric vehicles (PHEV), it is necessary to provide the high exhaust-gas temperature and to keep the exhaust-gas aftertreatment system effective. The engine starting condition of the PHEV is cold, and the engine start and stop is repeated. And, the engine load of the PHEV is assisted by the electric motor. Therefore, the exhaust-gas aftertreatment system of the PHEV is not able to get the enough high exhaust-gas temperature. And, the warm-up of the exhaust-gas aftertreatment system for the PHEV is spent the long time. So, it is worried about a bad effect on the emission characteristics of the PHEV.
Technical Paper

A Study on Hybrid Control Method for Improvement of Fuel Economy and Exhaust-Gas Emission of Hybrid Trucks

2015-09-01
2015-01-1780
Next-generation vehicles which include Electric Vehicles and Hybrid Electric Vehicles are studied and expected to reduce carbon dioxide emissions. The number of small delivery hybrid trucks has increased in the commercial vehicle class. The engine load of a commercial hybrid truck is reduced by using an electric motor. Fuel economy of the hybrid truck is improved with the assist. On the other hand, exhaust-gas temperature is decreased, and it has a negative effect on the purification performance of aftertreatment system. In this report, the fuel performance and emission gas characteristics of marketed small hybrid trucks were surveyed using the chassis dynamometer test system.
Technical Paper

A Study of Fuel Economy Improvement of Small Delivery Hybrid Trucks

2014-10-13
2014-01-2903
Next-generation vehicles which include Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) are researched and expected to reduce carbon dioxide (CO2) emissions in the future. In the national new-car sales in 2012 of Japan, the total sales of hybrid vehicles kept 26.5% share. In the field of passenger cars, this share was 29.7%. And, this share rose about four times compared to that of 2008 [1]. Also, small delivery hybrid trucks are increased in the commercial vehicle class. Fuel economy of hybrid trucks in the catalog specifications is relatively better than that of the diesel tracks which have no hybrid systems. Nevertheless, hybrid trucks' users report that advantages of fuel economy of hybrid trucks at the real traffic driving conditions are small.
Technical Paper

Development of Evaluation System for Exhaust Gas and Fuel Economy of Next-generation Hybrid Electric Vehicles

2013-10-14
2013-01-2602
Next-generation vehicles which include Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) are researched and expected to reduce CO2 emissions in the future. Generally, the main factor to support high efficiency of EV and HEV is the idle stop, motor assistance and regenerative braking. The vehicle mechanism of HEV is complex, compared with conventional internal combustion engine vehicle. Certification test method of gas emissions and fuel consumption is used driving mode, which is currently reflecting the typical driving conditions in the market. And driving mode of certification test is established focusing on the reproducibility of driving by conventional internal combustion engine vehicles. It is necessary to consider that the driving mode for the vehicle used regenerative energy is reflected correctly. And high accuracy certification test method for next generation HEVs is necessary in order to evaluate exhaust gas and fuel economy.
X