Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Next-gen battery strategies 2027+: Potentials and challenges for future battery designs and diversification in product portfolios to serve a large bandwidth of market applications

2024-07-02
2024-01-3018
The pace of innovations in battery development is revolutionizing the landscape and opportunities for energy storage applications leading to a stronger market segmentation enabling a better suitability to fulfill specific application requirements. For automotive applications, several approaches to increase energy densities, to improve fast charging performance, and to reduce cost on a pack level are considered. Among them, a promising example is the direct integration of battery cells into the battery pack (Cell-to-pack; CTP) or vehicle (Cell-to-chassis, CTC) to increase energy densities and to reduce costs, as already commercialized by Tesla, CATL and others. In the pack development, especially Asian players are one of the frontrunners, where e.g., hybrid cell battery systems with a mixture of cells with different cathode chemistries as introduced by NIO, are experiencing a high interest of the market.
Book

Stapp Car Crash Journal

2024-06-28
This title includes the technical papers developed for the 2023 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion about the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

HVAC Blower: a Steady State RANS Noise Prediction Method

2024-06-12
2024-01-2937
In an ever-transforming sector such as that of private road transport, major changes in the propulsion systems entail a change in the perception of the noise sources and the annoyance they cause. As compared to the scenario encountered in vehicles equipped with an internal combustion engine (ICE), in electrically propelled vehicles the heating, ventilation, and air conditioning (HVAC) system represents a more prominent source of noise affecting a car’s passenger cabin. By virtue of the quick turnaround, steady state Reynolds-averaged Navier Stokes (RANS)- based noise source models are a handy tool to predict the acoustic power generated by passenger car HVAC blowers. The study shows that the most eminent noise source type is the dipole source associated with fluctuating pressures on solid surfaces.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

A critical review of some Panel Contribution Analysis methods used in interior vehicle acoustics

2024-06-12
2024-01-2932
In the acoustic study of the interior noise of a vehicle, whether for structure-borne or air-borne excitations, knowing which areas contribute the most to interior noise and therefore should be treated as a priority, is the main goal of the engineer in charge of the NVH. Very often these areas are numerous, located in different regions of the vehicle and contribute at different frequencies to the overall sound pressure level. This has led to the development of several “Panel Contribution Analysis” (PCA) experimental techniques. For example, a well-known technique is the masking technique, which consists of applying a “maximum package” (i.e., a package with very high sound insulation) to the panels outside of the area whose contribution has to be measured. This technique is pragmatic but rather cumbersome to implement. In addition, it significantly modifies the dynamics and internal acoustics of the vehicle.
Technical Paper

Experimental Study of Lignin Fuels for CI Engines

2024-06-12
2024-37-0022
This study explores the feasibility of using a sustainable lignin-based fuel, consisting of 44 % lignin, 50 % ethanol, and 6 % water, in conventional compression ignition (CI) marine engines. Through experimental evaluations on a modified small-bore CI engine, we identified the primary challenges associated with lignin-based fuel, including engine startup and shutdown issues due to solvent evaporation and lignin solidification inside the fuel system, and deposit formation on cylinder walls leading to piston ring seizure. To address these issues, we developed a fuel switching system transitioning from lignin-based fuel to cleaning fuel with 85 vol% of acetone, 10 vol% of water and 5 vol% of ignition improving additive, effectively preventing system clogs.
Technical Paper

Bushing Stiffness Optimization Method for NVH Improvement Using Blocked Force and Energy-Based Index in Suspension System

2024-06-12
2024-01-2921
Reductions in powertrain noise have led to an increased proportion of road noise, prompting various studies aimed at mitigating it. Road excitation primarily traverses through the vehicle suspension system, necessitating careful optimization of the characteristics of bushings at connection points. However, optimizing at the vehicle assembly stage is both time-consuming and costly. Therefore, it is essential to proceed with optimization at the subsystem level using appropriate objective functions. In this study, the blocked force and energy-based index derived from complex power were used to optimize the NVH performance. Calculating the complex power in each bushing enables computing the power flow, thereby providing a basis for evaluating the NVH performance. Through stiffness injection, the frequency response functions (FRF) of the system can be predicted according to arbitrary changes in the bushing stiffness.
Technical Paper

A Low-Cost System for Road Induced Tire Cavity Noise Control (RTNC)

2024-06-12
2024-01-2961
The transition from ICE to electric power trains in new vehicles along with the application of advanced active and passive noise reduction solutions has intensified the perception of noise sources not directly linked to the propulsion system. This includes road noise as amplified by the tire cavity resonance. This resonance mainly depends on tire geometry, air temperature inside the tire and vehicle speed and is increasingly audible for larger wheels and heavier vehicles, as they are typical for current electrical SUV designs. Active technologies can be applied to significantly reduce narrow band tire cavity noise with low costs and minimal weight increase. Like ANC systems for ICE powertrains, they make use of the audio system in the vehicle. In this paper, a novel low-cost system for road induced tire cavity noise control (RTNC) is presented that reduces the tire cavity resonance noise inside a car cabin.
Technical Paper

Numerical Study of Application of Gas Foil Bearings in High-Speed Drivelines

2024-06-12
2024-01-2941
Gas bearings are an effective solution to high-speed rotor applications for its contamination free, reduced maintenance and higher reliability. However, low viscosity of gas leads to lower dynamic stiffness and damping characteristics resulting in low load carrying capacity and instability at higher speeds. Gas bearings can be enhanced by adding a foil structure commonly known as gas foil bearings (GFBs), whose dynamic stiffness can be tailored by modifying the geometry and the material properties resulting in better stability and higher load carrying capacity. A detailed study is required to assess the performance of high-speed rotor systems supported on GFBs, therefore in this study a bump type GFB is analyzed for its static and dynamic characteristics. The static characteristics are obtained by solving the non-linear Reynolds equation through an iterative procedure.
Technical Paper

Roadnoise Reduction through Component-TPA with Test and Simulation convergence using Blocked Force

2024-06-12
2024-01-2952
While conventional methods like classical Transfer Path Analysis (TPA), Multiple Coherence Analysis (MCA), Operational Deflection Shape (ODS), and Modal Analysis have been widely used for road noise reduction, component-TPA from Model Based System Engineering (MBSE) is gaining attention for its ability to efficiently develop complex mobility systems. In this research, we propose a method to achieve road noise targets in the early stage of vehicle development using component-level TPA based on the blocked force method. An important point is to ensure convergence of measured test results (e.g. sound pressure at driver ear) and simulation results from component TPA. To conduct component-TPA, it is essential to have an independent tire model consisting of tire blocked force and tire Frequency Response Function (FRF), as well as full vehicle FRF and vehicle hub FRF.
Technical Paper

Electric Vehicle Ride & Vibrations Analysis - Full electric vehicle MBD model development for NVH studies

2024-06-12
2024-01-2918
The NVH performance of electric vehicles is a key indicator of vehicle quality, being the structure-borne transmission predominating at low frequencies. Many issues are typically generated by high vibrations, transmitted through different paths, and then radiated acoustically into the cabin. A combined analysis, with both finite-element and multi-body models, enables to predict the interior vehicle noise and vibration earlier in the development phases, to reduce the development time and moreover to optimize components with an increased efficiency level. In the present work, a simulation of a Hyundai electric vehicle has been performed in IDIADA VPG with a full vehicle multibody (MBD) model, followed by vibration/acoustic simulations with a Finite elements model (FEM) in MSC. Nastran to analyze the comfort. Firstly, a full vehicle MBD model has been developed in MSC. ADAMS/Car including representative flexible bodies (generated from FEM part models).
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

Definition and Application of a Target Cascading Process on a Fully Trimmed Body, from Vehicle Objectives to Component Objectives

2024-06-12
2024-01-2916
Finite element (FE) based simulations for fully trimmed bodies are a key tool in the automotive industry to predict and understand the Noise, Vibration and Harshness (NVH) behavior of a complete car. While structural and acoustic transfer functions are nowadays straight-forward to obtain from such models, the comprehensive understanding of the intrinsic behavior of the complete car is more complex to achieve, in particular when it comes to the contribution of each sub-part to the global response. This paper proposes a complete target cascading process, which first assesses which sub-part of the car is the most contributing to the interior noise, then decomposes the total structure-borne acoustic transfer function into several intermediate transfer functions, allowing to better understand the effect of local design changes.
Technical Paper

Active Vibration Control of Road Noise Path Using Piezoelectric Stack Actuators and Filtered-X LMS Algorithm for Electric Vehicle Applications

2024-06-12
2024-01-2953
This paper presents the novel active vibration control (AVC) system that controls vehicle body vibration to reduce the structural borne road noise. As a result of vehicle noise testing in an electric vehicle, the predominant frequency of vehicle body vibration that worsens interior noise is in the range of 150-250Hz. Such vibration in that frequency range, commonly masked in engine vibrations, are hard to neglect for electric vehicles. The vibration source of that frequency is the resonance of tire cavity mode. Resonator or absorption material has been applied inside the tire for the control of cavity noise as a passive method. They require an increment of weight and cost. Therefore, a novel method is necessary. The vibration amplified by resonance of cavity mode is transferred to the vehicle body throughout the suspension system. To reduce the vibration, AVC system is applied to the suspension mount.
X