Refine Your Search

Topic

Author

Search Results

Journal Article

Rotary Fatigue Analysis of Forged Magnesium Road Wheels

2008-04-14
2008-01-0211
Fatigue analysis incorporating explicit finite element simulation was conducted on a forged magnesium wheel model where a rotating bend moment was applied to the hub to simulate rotary fatigue testing. Based on wheel fatigue design criteria and a developed fatigue post-processor, the safety factor of fatigue failure was calculated for each finite element. Fatigue failure was verified through experimental testing. Design modifications were proposed by increasing the spoke thickness. Further numerical and experimental testing indicated that the modified design passed the rotary fatigue test.
Technical Paper

Full Body Car Analysis in the Time and Frequency Domains - Sheet, Spot and Seam Weld Fatigue Benchmark Studies

2020-04-14
2020-01-0195
The fatigue analysis of a full car body requires the sheet metal (sheet fatigue), spot welds (spot weld fatigue) and seam welds (seam weld fatigue) to be thoroughly evaluated for durability. Traditionally this has always been done in the time domain, but recently new frequency domain techniques are able to perform these tasks with numerous advantages. This paper will summarize the frequency domain process and then compare the results and performance against the more usual time domain process.
Technical Paper

Transient Clunk Response of a Driveline System: Laboratory Experiment and Analytical Studies

2007-05-15
2007-01-2233
A laboratory experiment is designed to examine the clunk phenomenon. A static torque is applied to a driveline system via the mass of an overhanging torsion bar and electromagnet. Then an applied load may be varied via attached mass and released to simulate the step down (tip-out) response of the system. Shaft torques and torsional and translational accelerations are recorded at pre-defined locations. The static torque closes up the driveline clearances in the pinion/ring (crown wheel) mesh. With release of the applied load the driveline undergoes transient vibration. Further, the ratio of preload to static load is adjusted to lead to either no-impact or impact events. Test A provides a ‘linear’ result where the contact stiffness does not pass into clearance. This test is used for confirming transient response and studying friction and damping. Test B is for mass release with sufficient applied torque to pass into clearance, allowing the study of the clunk.
Technical Paper

Wheel Fight Objective Metric Development

2007-05-15
2007-01-2391
Wheel Fight is the undesirable rotational response of a vehicle's steering wheel due to road input at any or all of the road/wheel tire patches. The type of road input that will cause wheel fight comes in two forms: continuous rough road surfaces such as broken concrete or transient inputs such as pot-holes and tar strips. An objective method to quantify a vehicle's wheel fight sensitivity would be of great value to the vehicle development engineer. To that end, a study was conducted on Ford's Vehicle Vibration Simulator (VVS) to gather subjective responses and use those as a basis for correlation to an objective metric. One road surface known to induce wheel fight consists of using a rubber strip and driving over it while impacting only one side of the vehicle. Under this condition, steering wheel data was acquired on five different light trucks from which paired comparison studies were conducted.
Technical Paper

Optimizing 4×4 Steering Geometry

2007-01-28
2007-01-2675
This paper is related to a new concept for the steering linkage of light trucks featuring mono-beam front axles. The current configuration of steering systems for those vehicles comprise a worm and sector steering with a Pitman arm connected to a transverse drag link. This last one connects to the steering link that finally steers the left and right wheels. The problem that has been experienced with this system is that, during a braking event, results in a very unfavorable bump steering condition.
Technical Paper

Vehicle Response Comparison to Tire Tread Separations Induced by Circumferentially Cut and Distressed Tires

2007-04-16
2007-01-0733
In this study, tests were performed with modified tires at the right rear location on a solid rear axle sport utility vehicle to compare the vehicle inputs from both: (1) tire tread belt detachments staged by circumferentially cut tires, and (2) a tire tread detachment staged by distressing a tire in a laboratory environment. The forces and moments that transfer through the road wheel were measured at the right and left rear wheel locations using wheel force transducers; displacements were measured between the rear axle and the frame at the shock absorber mounting locations, ride height displacements were measured at the four corners of the vehicle, and accelerations were measured on the rear axle. Onboard vehicle accelerations and velocities were measured as well. The data shows that the tire tread belt detachments prepared by circumferentially cut tires and distressed tires have similar inputs to the vehicle.
Technical Paper

Comparative Dynamic Analysis of Tire Tread Belt Detachments and Stepped Diameter (“Lumpy”) Tires

2007-04-16
2007-01-0846
In this study, tests were performed with modified tires at the right rear location on a solid axle sport utility vehicle to compare vehicle inputs and responses from both: (1) staged tire tread belt detachments, and (2) stepped diameter (“lumpy”) tires. Lumpy tires consist of equal size sections of tread that are vulcanized at equidistant locations around the outer circumference of the tire casing. Some have used lumpy tires in attempt to model the force and displacement inputs created by a tire tread belt separation. Four configurations were evaluated for the lumpy tires: 1-Lump, 2-Lump (2 lengths), and 3-Lump.
Technical Paper

Effects of Braking on Suspension Loads in Potholes

2007-04-16
2007-01-1647
Braking has a strong effect on a vehicle's front suspension loads when the vehicle is driven over a pothole. The suspension loads of a vehicle braking while going over a pothole are also affected by vehicle design, vehicle weight and speed. In this study a simplified suspension model is presented, which is then validated by the simulation of a vehicle model. The simplified suspension model provides an efficient approach to evaluate effects of braking on wheel rebound into potholes, which determines the magnitude of impact loads when the tires hit the pothole edge. The vehicle model is used not only to validate the simplified suspension model, but also to provide the information of wheel center loads in addition to the wheel position and velocity. The analysis using the vehicle model agrees with pothole test results. The study reveals how vehicle braking affects the wheel center longitudinal forces during the pothole impact.
Technical Paper

A Test-Based Procedure for the Identification of Rack and Pinion Steering System Parameters for Use In CAE Ride-Comfort Simulations

2009-05-19
2009-01-2090
Current CAE modeling and simulation techniques in the time domain allow, by now, very accurate prediction of many ride-comfort performances of the cars. Nevertheless, the prediction of the steering wheel rotation vibration excited by, for instance, wheel unbalance or asymmetric obstacle impact, often runs into the difficulty of modeling the steering line with sufficient accuracy. For a classic rack and pinion, hydraulic assisted steering line, one of the challenges is to model the complex and non linear properties - stiffness, friction and damping - of the rack-rack case system. This paper proposes a rack model, thought for easy implementation in complex multi-body models, and an identification procedure of its parameters, based on measurements, in the operational range of the wheel unbalance excitation. The measurements have been gathered by specific tests on the components and the test set-up is also shown here.
Technical Paper

A semi-analytical approach for vehicle ride simulation

2008-10-07
2008-36-0048
Vehicle dynamics CAE capabilities has increased in the past few years, specially, for handling and steering attributes. However, secondary ride simulations are still highly depended on the tire model. Such tire model must be capable to simulate high order phenomenon such as impact and harshness transmissibility in three directions. In order to gather tire information sufficient to cope with these phenomena, one needs to perform a series of specific tests, and so be able to build the intended tire model. Still, there could be correlation issues. This whole process takes a lot of time and resources. This article presents a semi-analytical approach, using data gathered via wheel force transducers (WFTs) that are typically used for load cascading and durability purposes. The method main advantage is that since it relies on measured data at the wheel center, it is independent of a tire model, and, as such, it demands less time and resources.
Technical Paper

The Use of Discrete Wavelet Transform in Road Loads Signals Compression

2009-10-06
2009-36-0238
Wavelets are a powerful mathematical tool used to multi-resolution time-frequency decomposition of signals, in order to analyze them in different scales and obtain different aspects of the information. Despite being a relatively new tool, wavelets have being applied in several areas of human knowledge, especially in signal processing, with emphasis in encoding and compression of image, video and audio. Based on a previous successful applications (FRAZIER, 1999) together a commitment to quality results, this paper evaluates the use of the Discrete Wavelet Transform (DWT) as an compression algorithm to reduce the amount of data collected in road load signals (load history) which are used by the durability engineering teams in the automotive industry.
Technical Paper

The Effects of Front Suspension Parameters on Road Wheel Toe Dynamics

2001-03-05
2001-01-0482
Front road wheel toe dynamics directly affects tire wear and steering wheel vibration, which in turn negatively impacts customer satisfaction. Though static toe can be preset in assembly plants, the front road wheels can vibrate around steering axes or kingpin axes due to tire mass unbalance and nonuniformity. The frequency of the vibration depends on the wheel size and vehicle speed, while the amplitude of the vibration is not only dictated by the tire forces, but also by suspension and steering parameters. This paper presents a study on the sensitivities of the front road wheel toe dynamics to the parameters of a short-long-arm suspension (SLA) and a parallelogram steering system. These parameters includes hard point shift, steering gear compliance, gear friction, control arm bushing rates, friction in control arm ball joints, and compliance in tie rod outboard joints.
Technical Paper

Effect of Cooling Time on Fracture Toughness at the Simulated HAZ of DP600 Steels

2004-03-08
2004-01-0165
In this study, the Gleeble test was used to investigate the effect of cooling time, which is an indication of welding heat input, on fracture toughness at the simulated HAZ of different test materials, including one mild steel and three DP600 steels from three different suppliers. One of the important findings is that the three DP600 steels have similar tensile properties and similar base metal microstructures. After different simulated welding thermal cycles, however, the microstructure, the microhardness and thus the fracture toughness of the simulated HAZ of the steels showed significant variations among the steels tested, which indicates that DP600 steels from different suppliers can have different responses to the welding heat input.
Technical Paper

Fatigue Analysis of Steel MIG Welds in Automotive Structures

2004-03-08
2004-01-0627
MIG weld failures are commonly seen in chassis and frame structures in automobile industry. Until now, testing and CAE analysis based on local stresses in the vicinity of MIG weld were driving the design of these welds. With the advent of advanced methods and tools, it is possible to estimate fatigue life of MIG welds and support the design in the early stages of the vehicle program. Recently, fatigue damage models are developed for assessing the durability of MIG welds in aluminum auto structures. These damage models are based on advanced technologies like mesh-insensitive structural stress method, virtual node method, estimation of notch stress intensities and life predictions based on two-stage crack growth law. This paper outlines the theoretical aspects involved in deriving the master S-N curve.
Technical Paper

Wheel Dust Measurement and Root Cause Assessment

2003-10-19
2003-01-3341
North American drivers particularly dislike wheel dust (brake dust on their wheels). For some vehicle lines, customer surveys indicate that wheel dust is a significant concern. For this reason, Ford and its suppliers are investigating the root causes of brake dust and developing test procedures to detect wheel dust issues up-front. Intuitively, it would appear that more brake wear would lead to more wheel dust. To test this hypothesis, a gage was needed to quantitatively measure the wheel dust. Gages such as colorimeters were evaluated to measure the brightness (L*) of the wheel, which ranged from roughly 70-80% (clean) to 10-20% (very dirty). Gage R&R's and subjective ratings by a panel of 30 people were used to validate the wheel dust gages. A city traffic vehicle test and an urban dynamometer procedure were run to compare the level of wheel dust for 10 different lining types on the same vehicle.
Technical Paper

Bumper Fatigue Cracks

2003-11-18
2003-01-3673
One thing that is very important in a carmaker company is its know-how built during all its life. Such an experience allows, for instance, to correlate the customer expected product life with accelerated tests procedures. When it comes to cars, it is usual to have correlated proving routes in such way that if a prototype can take a number of passing in the proving ground without failure, it is unlikely the car is going to fail during a regular life. In the other hand, if a failure at determined percentage of the test happens, it is predictable that the same failure shows up at the same percentage of the product design life. This paper proposes a methodology based on the SxN fatigue theory to solve durability issues observed in correlated durability tests.
Technical Paper

“Rubber Coupling” at a 4×4 Transmition System

2003-11-18
2003-01-3684
There are many different vibration sources in a car. Engine, gears, road roughness, impacts against the wheels cause vibration and sound that can decrease the parts and the car durability as well as affect drivability, safety and passengers and community comfort. In 4×4 cars, some extra vibration sources are the parts responsible for transmitting the torque and power to the rear wheels. Each of them has their own vibration modes, excited mostly by its imbalance or by the second order engine vibration. The engine vibration is a very well known phenomena and the rear driveshaft is designed not to have any vibration mode in the range of frequencies that the engine works or its second order. The imbalance of a driveshaft is also a design requirement. That means, the acceptable imbalance of the driveshaft is limited to a maximum value.
Technical Paper

Analytical Methods for Durability in the Automotive Industry - The Engineering Process, Past, Present and Future

2001-03-05
2001-01-4075
In the early days of the automotive industry, durability and reliability were hit or miss affairs, with end-users often being the first to know about any durability problems - and in many cases forming an essential part of the development process. More recently, automotive companies have developed proving ground and laboratory test procedures that aim to simulate typical or severe customer usage. These test procedures have been used to develop the products through a series of prototypes and to prove the durability of the product prior to release in the marketplace. Now, commercial pressures and legal requirements have led to increasing reliance on CAE methods, with fatigue life prediction having a central role in the durability engineering process.
Technical Paper

Subcompact Sport Vehicle Development

2001-03-05
2001-01-3817
Considering that the sport cars versions are normally derived from medium car segment, the big challenge in this program was to transform one subcompact in a real sport car. With the focus at the consumer that looks for performance and enjoys sporty driving in conjunction with project financials and competition data the preliminary content was established together with all involved areas, Marketing, Finance, Manufacturing and Quality. Based on the items that indicate high performance, the items considered mandatory or desired by the customer and items detected by Quality research including internal indicators and external indicators, ICCD (Intensified Customer Concern Definition) and TGW (Things Going Wrong), the content was developed in three main directions towards Customer Satisfaction, I) Characterize the vehicle as a high performance car, a pure sport car with outstanding performance for power train, suspensions and brakes mainly.
X