Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Detailed Kinetic Modeling of Toluene Combustion over a Wide Range of Temperature and Pressure

2007-07-23
2007-01-1885
The ignition delay times of toluene-oxygen-argon mixtures with fuel equivalence ratios from 0.5 to 1.5 and concentrations of toluene from 0.1 to 2.0% were measured behind reflected shock waves for temperatures 1270 to 1755 K and at a pressure of 2.4 ± 0.7 atm. A detailed chemical kinetic model has been developed on the basis of a kinetic mechanism proposed by Pitz et al. [1] to reproduce our experimental results as well as some literature data obtained in other shock tubes at pressures from 1.1 to 50 atm. It is found that the present chemical kinetic model could give better agreement on the pressure dependence of the ignition delay times than the previously proposed kinetic models.
Technical Paper

An Experimental and Kinetic Modeling Study of the Combustion of n-Butane and Isobutane in an Internal Combustion Engine

1990-02-01
900028
Butane is the simplest alkane fuel for which more than a single structural isomer is possible. In the present study, n-butane and isobutane are used in a test engine to examine the importance of molecular structure in determining knock tendency, and the experimental results are interpreted using a detailed chemical kinetic model. A sampling valve was used to extract reacting gases from the combustion chamber of the engine. Samples were withdrawn at different times during the engine cycle, providing concentration histories of a wide variety of reactant, olefin, carbonyl, and other intermediate and product species. The chemical kinetic model predicted the formation of all the intermediate species measured in the experiments. The agreement between the measured and predicted values is mixed and is discussed. Calculations show that RO2 isomerization reactions are more important contributors to chain branching in the oxidation of n-butane than in isobutane.
Technical Paper

Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine

2009-06-15
2009-01-1806
Now more than ever, the increasing strictness of environmental regulation and the stronger need of higher efficiency standards are pushing for the development of cleaner and energy-efficient powertrains. HCCI engines are suitable candidates to achieve these objectives. Understanding the autoignition process and how it is affected by operating conditions is central to the development of these engines. In addition to experiments, detailed kinetic modeling represents a very effective tool for gaining deeper insight into the fundamentals of HCCI autoignition and combustion. Indeed, modeling activities are today widely used in engine design, allowing a significant reduction in prototype development costs and providing a valuable support to the improvement of control strategies.
Technical Paper

Autoignition Chemistry of N-Butane in a Motored Engine:A Comparison of Experimental and Modeling Results

1988-10-01
881605
A detailed chemical kinetic mechanism was used to simulate the oxidation of n-butane/air mixtures in a motored engine. The modeling results were compared to species measurements obtained from the exhaust of a CFR engine and to measured critical compression ratios. Pressures, temperatures and residence times were considered that are in the range relevant to automotive engine knock. The compression ratio was varied from 6.6 to 15.5 to affect the recycle fraction and the maximum pressure and temperature of the fuel/air mixture. Engine speeds of 600 and 1600 rpm were examined which corresponded to different fuel/air residence times. The relative yields of intermediate species calculated by the model matched the measured yields generally to within a factor of two. The residual fraction derived from the previous engine cycle had a significant impact on the overall reaction rate in the current cycle.
Technical Paper

The Role of Low Temperature Chemistry in the Autoignition of N-Butane

1987-11-01
872108
We have studied the chemical aspects of the compression ignition of n-butane experimentally in a spark ignition engine and theoretically using computer simulations with a detailed chemical kinetic mechanism. The results of these studies demonstrate the effect of initial charge composition on autoignition. Experimentally, when the initial charge consisted of 80% fresh charge and 20% recycled products of combustion, we observed that autoignition was inhibited. On the other hand, charging with 80% fresh charge and 20% partial oxidation products from the previous motored cycle resulted in enhanced low-temperature chemistry (with the associated heat release and temperature increase) and autoignition. We assessed how well the detailed kinetic model could predict the autoignition and modified the model to better simulate the experimental observations. We also assessed how chemical preconditioning of the fuel-air charge affected the autoignition process.
Technical Paper

The Autoignition of Isobutane in a Knocking Spark Ignition Engine

1987-02-01
870169
The chemical aspects of the autoignition of isobutane are studied experimentally in a spark ignition engine and theoretically using computer simulations with a detailed chemical kinetic mechanism. The results of these studies show that even with the relatively knock-resistant fuel, isobutane, there is still a significant amount of fuel breakdown in the end gas with a resulting heat release and temperature increase. The ability of the detailed kinetic model to predict this low temperature chemical activity is assessed and the model is modified to simulate more closely the experimental observations. We address the basic question of whether this first stage of combustion accounts for a chemical preconditioning of the end gas that leads to the autoignition; or whether it merely provides sufficient heat release in the end gas that high temperature autoignition is initiated.
X