Refine Your Search

Topic

Author

Search Results

Journal Article

The Influence of Disablement of Various Brakes on the Dry Stopping Performance and Stability of a Tractor-Semitrailer

2009-04-20
2009-01-0099
This research was performed using a designed experiment to evaluate the loss of dry surface braking performance and stability that could be associated with the disablement of specific brake positions on a tractor-semitrailer. The experiment was intended to supplement and update previous research by Heusser, Radlinski, Flick, and others. It also sought to establish reasonable limits for engineering estimates on stopping performance degradation attributable to partial or complete brake failure of individual S-cam air brakes on a class 8 truck. Stopping tests were conducted from 30 mph and 60 mph, with the combination loaded to GCW (80,000 lb.), half-payload, and with the flatbed semitrailer unladen. Both tractor and semitrailer were equipped with antilock brakes. Along with stopping distance, brake pressures, longitudinal acceleration, road wheel speed, and steering wheel position and effort were also recorded.
Technical Paper

Transient Clunk Response of a Driveline System: Laboratory Experiment and Analytical Studies

2007-05-15
2007-01-2233
A laboratory experiment is designed to examine the clunk phenomenon. A static torque is applied to a driveline system via the mass of an overhanging torsion bar and electromagnet. Then an applied load may be varied via attached mass and released to simulate the step down (tip-out) response of the system. Shaft torques and torsional and translational accelerations are recorded at pre-defined locations. The static torque closes up the driveline clearances in the pinion/ring (crown wheel) mesh. With release of the applied load the driveline undergoes transient vibration. Further, the ratio of preload to static load is adjusted to lead to either no-impact or impact events. Test A provides a ‘linear’ result where the contact stiffness does not pass into clearance. This test is used for confirming transient response and studying friction and damping. Test B is for mass release with sufficient applied torque to pass into clearance, allowing the study of the clunk.
Technical Paper

The Ohio State University Automated Highway System Demonstration Vehicle

1998-02-23
980855
The Ohio State University Center for Intelligent Transportation Research (CITR) has developed three automated vehicles demonstrating advanced cruise control, automated steering control for lane keeping, and autonomous behavior including automated stopping and lane changes in reaction to other vehicles. Various sensors were used, including a radar reflective stripe system and a vision based system for lane position sensing, a radar system and a scanning laser rangefinding system for the detection of objects ahead of the vehicle, and various supporting sensors including side looking radars and an angular rate gyroscope. These vehicles were demonstrated at the National Automated Highway System Consortium (NAHSC) 1997 Technical Feasibility Demonstration in a scenario involving mixed autonomous and manually driven vehicles. This paper describes the demonstration, the vehicle sensing, control, and computational hardware, and the vehicle control software.
Technical Paper

Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface

2007-04-16
2007-01-0649
The interface between a plenum and primary runner in log-style intake manifolds is one of the dominant sources of flow losses in the breathing system of Internal Combustion Engines (ICE). A right-angled T-junction is one such interface between the plenum (main duct) and the primary runner (sidebranch) normal to the plenum's axis. The present study investigates losses associated with the combining flow through these junctions, where fluid from both sides of the plenum enters the primary runner. Steady, incompressible-flow experiments for junctions with circular cross-sections were conducted to determine the effect of (1) runner interface radius of 0, 10, and 20% of the plenum diameter, (2) plenum-to-runner area ratio of 1, 2.124, and 3.117, and (3) runner taper area ratio of 2.124 and 3.117. Mass flow rate in each branch was varied to obtain a distribution of flow ratios, while keeping the total flow rate constant.
Technical Paper

Evaluation of a Shock Model for Vehicle Simulation

2007-04-16
2007-01-0845
This paper describes the development of a more accurate shock absorber model in order to obtain better vehicle simulation results. Previous shock models used a single spline to represent shock force versus shock velocity curves. These models produced errors in vehicle simulations because the damper characteristics are better represented by the application of a hysteresis loop in the model. Thus, a new damper model that includes a hysteresis loop is developed using Matlab Simulink. The damper characteristics for the new model were extracted from measurements made on a shock dynamometer. The new model better represents experimental shock data. The new shock model is incorporated into two different lumped-parameter vehicle models: one is a three degree-of-freedom vehicle handling model and the other is a seven degree-of-freedom vehicle ride model. The new damper model is compared with the previous model for different shock mileages (different degrees of wear).
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

A Study of Vehicle Response Asymmetries During Severe Driving Maneuvers

2004-03-08
2004-01-1788
During Phase VI of the National Highway Traffic Safety Administration's (NHTSA) Light Vehicle Rollover Research Program, three of the twenty-six light vehicles tested exhibited significant response asymmetries with respect to left versus right steer maneuvers. This paper investigates possible vehicle asymmetric characteristics and unintended inputs that may cause vehicle asymmetric response. An analysis of the field test data, results from suspension and steering parameter measurements, and a summary of a computer simulation study are also given.
Technical Paper

The 2002 Ohio State University FutureTruck - The BuckHybrid002

2003-03-03
2003-01-1269
This year, in the third year of FutureTruck competition, the Ohio State University team has taken the challenge to convert a 2002 Ford Explorer into a more fuel efficient and environmentally friendly SUV. This goal was achieved by use of a post-transmission, charge sustaining, parallel hybrid diesel-electric drivetrain. The main power source is a 2.5-liter, 103 kW advanced CIDI engine manufactured by VM Motori. A 55 kW Ecostar AC induction electric motor provides the supplemental power. The powertrain is managed by a state of the art supervisory control system which optimizes powertrain characteristics using advanced energy management and emission control algorithms. A unique driver interface implementing advanced telematics, and an interior designed specifically to reduce weight and be more environmentally friendly add to the utility of the vehicle as well as the consumer appeal.
Technical Paper

Testing and Validation of a Belted Alternator System for a Post-Transmission Parallel PHEV for the EcoCAR 3 Competition

2017-03-28
2017-01-1263
The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
Technical Paper

A Fuzzy Decision-Making System for Automotive Application

1998-02-23
980519
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
Technical Paper

Applications of Computer Simulations for Part and Process Design for Automotive Stampings

1997-02-24
970985
Recent studies in sheet metal forming, conducted at universities world wide, emphasize the development of computer aided techniques for process simulation. To be practical and acceptable in a production environment, these codes must be easy to use and allow relatively quick solutions. Often, it is not necessary to make exact predictions but rather to establish the influence of process variables upon part quality, tool stresses, material flow, and material thickness variation. In cooperation with its industrial partners, the ERC for Net Shape Manufacturing of the Ohio State University has applied a number of computer codes for analysis and design of sheet metal forming operations. This paper gives a few selected examples taken from automotive applications and illustrates practical uses of computer simulations to improve productivity and reduce tool development and manufacturing costs.
Technical Paper

Planning Ohio's Transportation Research Center

1968-02-01
680166
Planning is proceeding on the research and development programs for Ohio's Transportation Research Center and on its physical layout. This 5600 acre research complex will contain some 60-70 miles of roadways, an extensive building complex and a 6000 ft airstrip. The planning includes: establishing an overall framework within which research and development demands can be related to available and potential resources; determining the nature, magnitude, and urgency of demands and the nature, quality, and quantity of resources; identifying constraints on future operation: establishing the payoff of alternative programs; selecting final short- and long-term programs and optimal physical layout.
Technical Paper

VP-SIM: A Unified Approach to Energy and Power Flow Modeling Simulation and Analysis of Hybrid Vehicles

2000-04-02
2000-01-1565
The aim of this paper is to describe a unified approach to modeling the energy efficiency and power flow characteristics of energy storage and energy conversion elements used in hybrid vehicles. Hybrid vehicle analysis and design is concerned with the storage of energy in three domains - chemical, mechanical, and electrical - and on energy conversions between these domains. The paper presents the physical and mathematical basis of this modeling approach, as well as a modular simulator that embodies the same basic principles. The use of the simulator as an analysis tool is demonstrated through the conceptual design of a sport-utility hybrid drivetrain.
Technical Paper

Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2–D PIV and 3–D PTV

1999-03-01
1999-01-0957
The evolution of the flow field inside an IC engine during the intake stroke was studied using 2 different experimental techniques, namely the 2–D Particle Image Velocimetry (2–D PIV) and 3–D Particle Tracking Velocimetry (3–D PTV) techniques. Both studies were conducted using a water analog engine simulation rig. The head tested was a typical pent–roof head geometry with two intake valves and one exhaust valve, and the simulated engine operating point corresponded to an idle condition. For both the 2–D PIV and 3–D PTV experiments, high–speed CCD cameras were used to record the motion of the flow tracer particles. The camera frame rate was adjusted to correspond to 1/4° of crank angle (CA), hence ensuring excellent temporal resolution for velocity calculations. For the 2–D PIV experiment, the flow field was illuminated by an Argon–ion laser with laser–sheet forming optics and this laser sheet was introduced through a transparent piston crown to illuminate the center tumble plane.
Technical Paper

Case History: Engine Timing Gear Noise Reduction

1999-05-17
1999-01-1716
This paper describes the procedures used to reduce the tonal noise of a class eight truck engine timing gear train that was initially found to be objectionable under idle operating conditions. Initial measurements showed that the objectionable sounds were related to the fundamental gear mesh frequency, and its second and third harmonics. Experimental and computational procedures used to study and trouble-shoot the problem include vibration and sound measurements, transmission error analysis of the gears under light load condition, and a dynamic analysis of the drive system. Detail applications of these techniques are described in this paper.
Technical Paper

Vehicle Dynamics Modeling for the National Advanced Driving Simulator of a 1997 Jeep Cherokee

1999-03-01
1999-01-0121
This paper discusses the development of the 1997 Jeep Cherokee model for the National Advanced Driving Simulator's planned vehicle dynamics software, NADSdyna. Recursive rigid body formalism called the Real Time Recursive Dynamics (RTRD) developed by the University of Iowa is used to model the front and rear suspension mechanisms. To complement vehicle dynamics for simulator applications, subsystems that include tires, aerodynamics, powertrain, brake, and steering are added to the rigid body dynamics model. These models provide high fidelity driving realism to simulate severe handling maneuvers in real time. The soundness of the model does not only depend on the mathematics of the model, but also on the validity of the parameters. Therefore, this paper discusses thoroughly the methodology of parameters estimation. A generic model of cruise control is included.
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

1999-03-01
1999-01-0209
Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.
Technical Paper

Localization and Perception for Control and Decision Making of a Low Speed Autonomous Shuttle in a Campus Pilot Deployment

2018-04-03
2018-01-1182
Future SAE Level 4 and Level 5 autonomous vehicles will require novel applications of localization, perception, control and artificial intelligence technology in order to offer innovative and disruptive solutions to current mobility problems. This paper concentrates on low speed autonomous shuttles that are transitioning from being tested in limited traffic, dedicated routes to being deployed as SAE Level 4 automated driving vehicles in urban environments like college campuses and outdoor shopping centers within smart cities. The Ohio State University has designated a small segment in an underserved area of campus as an initial autonomous vehicle (AV) pilot test route for the deployment of low speed autonomous shuttles. This paper presents initial results of ongoing work on developing solutions to the localization and perception challenges of this planned pilot deployment.
Technical Paper

Simulation Framework for Testing Autonomous Vehicles in a School for the Blind Campus

2021-04-06
2021-01-0118
With the advent of increasing autonomous vehicles on public roads, the safety of vulnerable road users such as pedestrians, cyclists, etc. has never been more important. These especially include Blind or Visually Impaired (BVI) pedestrians who face difficulty in making confident decisions in road crossings without the help of accessible pedestrian signals (APS). This paper addresses some of the safety measures that can be taken to improve and assess the safety of BVI pedestrians in a controlled environment like a BVI school campus where autonomous vehicles are operated. The majority of research on autonomous vehicle safety does not consider the edge cases of encounters with BVI pedestrians. Based on this motivation, requirements and characteristics of Non-BVI and BVI pedestrians have been stated along with the motion models used to predict their future movements. Existing tools based on Bayesian multi-model filters were used for pedestrian tracking and motion predictions.
X