Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Detailed Kinetic Modeling of Toluene Combustion over a Wide Range of Temperature and Pressure

2007-07-23
2007-01-1885
The ignition delay times of toluene-oxygen-argon mixtures with fuel equivalence ratios from 0.5 to 1.5 and concentrations of toluene from 0.1 to 2.0% were measured behind reflected shock waves for temperatures 1270 to 1755 K and at a pressure of 2.4 ± 0.7 atm. A detailed chemical kinetic model has been developed on the basis of a kinetic mechanism proposed by Pitz et al. [1] to reproduce our experimental results as well as some literature data obtained in other shock tubes at pressures from 1.1 to 50 atm. It is found that the present chemical kinetic model could give better agreement on the pressure dependence of the ignition delay times than the previously proposed kinetic models.
Technical Paper

An Experimental and Kinetic Modeling Study of the Combustion of n-Butane and Isobutane in an Internal Combustion Engine

1990-02-01
900028
Butane is the simplest alkane fuel for which more than a single structural isomer is possible. In the present study, n-butane and isobutane are used in a test engine to examine the importance of molecular structure in determining knock tendency, and the experimental results are interpreted using a detailed chemical kinetic model. A sampling valve was used to extract reacting gases from the combustion chamber of the engine. Samples were withdrawn at different times during the engine cycle, providing concentration histories of a wide variety of reactant, olefin, carbonyl, and other intermediate and product species. The chemical kinetic model predicted the formation of all the intermediate species measured in the experiments. The agreement between the measured and predicted values is mixed and is discussed. Calculations show that RO2 isomerization reactions are more important contributors to chain branching in the oxidation of n-butane than in isobutane.
Technical Paper

Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels

2007-04-16
2007-01-0175
The development of surrogate mixtures that represent gasoline combustion behavior is reviewed. Combustion chemistry behavioral targets that a surrogate should accurately reproduce, particularly for emulating homogeneous charge compression ignition (HCCI) operation, are carefully identified. Both short and long term research needs to support development of more robust surrogate fuel compositions are described. Candidate component species are identified and the status of present chemical kinetic models for these components and their interactions are discussed. Recommendations are made for the initial components to be included in gasoline surrogates for near term development. Components that can be added to refine predictions and to include additional behavioral targets are identified as well. Thermodynamic, thermochemical and transport properties that require further investigation are discussed.
Technical Paper

Plasma-Assisted Catalytic Reduction of NOx

1998-10-19
982508
Many studies suggest that lean-NOx SCR proceeds via oxidation of NO to NO2 by oxygen, followed by the reaction of the NO2 with hydrocarbons. On catalysts that are not very effective in catalyzing the equilibration of NO+O2 and NO2, the rate of N2 formation is substantially higher when the input NOx is NO2 instead of NO. The apparent bifunctional mechanism in the SCR of NOx has prompted the use of mechanically mixed catalyst components, in which one component is used to accelerate the oxidation of NO to NO2, and another component catalyzes the reaction between NO2 and the hydrocarbon. Catalysts that previously were regarded as inactive for NOx reduction could therefore become efficient when mixed with an oxidation catalyst. Preconverting NO to NO2 opens the opportunity for a wider range of SCR catalysts and perhaps improves the durability of these catalysts. This paper describes the use of a non-thermal plasma as an efficient means for selective partial oxidation of NO to NO2.
Technical Paper

Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine

2009-06-15
2009-01-1806
Now more than ever, the increasing strictness of environmental regulation and the stronger need of higher efficiency standards are pushing for the development of cleaner and energy-efficient powertrains. HCCI engines are suitable candidates to achieve these objectives. Understanding the autoignition process and how it is affected by operating conditions is central to the development of these engines. In addition to experiments, detailed kinetic modeling represents a very effective tool for gaining deeper insight into the fundamentals of HCCI autoignition and combustion. Indeed, modeling activities are today widely used in engine design, allowing a significant reduction in prototype development costs and providing a valuable support to the improvement of control strategies.
Technical Paper

Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

2001-03-05
2001-01-0653
The influence of the addition of oxygenated hydrocarbons to diesel fuels has been studied, using a detailed chemical kinetic model. Resulting changes in ignition and soot precursor production have been examined. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether, dimethoxymethane and methyl butanoate were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced the production of soot precursors. When the overall oxygen content in the fuel reached approximately 30-40 % by mass, production of soot precursors fell effectively to zero, in agreement with experimental studies. The kinetic factors responsible for these observations are discussed.
Technical Paper

The Intensity of Knock in an Internal Combustion Engine: An Experimental and Modeling Study

1992-10-01
922327
Experimental data have been obtained that characterize knock occurrence times and knock intensities in a spark ignition engine operating on indolene and 91 primary reference fuel, as spark timing and inlet temperature were varied. Individual, in-cylinder pressure histories measured under knocking conditions were conditioned and averaged to obtain representative pressure traces. These averaged pressure histories were used as input to a reduced and detailed chemical kinetic model. The time derivative of CO concentration and temperature were correlated with the measured knock intensity and percent cycles knocking. The goal was to evaluate the potential of using homogenous, chemical kinetic models as predictive tools for knock intensity.
Technical Paper

Autoignition Chemistry of N-Butane in a Motored Engine:A Comparison of Experimental and Modeling Results

1988-10-01
881605
A detailed chemical kinetic mechanism was used to simulate the oxidation of n-butane/air mixtures in a motored engine. The modeling results were compared to species measurements obtained from the exhaust of a CFR engine and to measured critical compression ratios. Pressures, temperatures and residence times were considered that are in the range relevant to automotive engine knock. The compression ratio was varied from 6.6 to 15.5 to affect the recycle fraction and the maximum pressure and temperature of the fuel/air mixture. Engine speeds of 600 and 1600 rpm were examined which corresponded to different fuel/air residence times. The relative yields of intermediate species calculated by the model matched the measured yields generally to within a factor of two. The residual fraction derived from the previous engine cycle had a significant impact on the overall reaction rate in the current cycle.
Technical Paper

The Role of Low Temperature Chemistry in the Autoignition of N-Butane

1987-11-01
872108
We have studied the chemical aspects of the compression ignition of n-butane experimentally in a spark ignition engine and theoretically using computer simulations with a detailed chemical kinetic mechanism. The results of these studies demonstrate the effect of initial charge composition on autoignition. Experimentally, when the initial charge consisted of 80% fresh charge and 20% recycled products of combustion, we observed that autoignition was inhibited. On the other hand, charging with 80% fresh charge and 20% partial oxidation products from the previous motored cycle resulted in enhanced low-temperature chemistry (with the associated heat release and temperature increase) and autoignition. We assessed how well the detailed kinetic model could predict the autoignition and modified the model to better simulate the experimental observations. We also assessed how chemical preconditioning of the fuel-air charge affected the autoignition process.
Technical Paper

The Autoignition of Isobutane in a Knocking Spark Ignition Engine

1987-02-01
870169
The chemical aspects of the autoignition of isobutane are studied experimentally in a spark ignition engine and theoretically using computer simulations with a detailed chemical kinetic mechanism. The results of these studies show that even with the relatively knock-resistant fuel, isobutane, there is still a significant amount of fuel breakdown in the end gas with a resulting heat release and temperature increase. The ability of the detailed kinetic model to predict this low temperature chemical activity is assessed and the model is modified to simulate more closely the experimental observations. We address the basic question of whether this first stage of combustion accounts for a chemical preconditioning of the end gas that leads to the autoignition; or whether it merely provides sufficient heat release in the end gas that high temperature autoignition is initiated.
Technical Paper

Feasibility of Plasma Aftertreatment for Simultaneous Control of NOx and Particulates

1999-10-25
1999-01-3637
Plasma reactors can be operated as a particulate trap or as a NOx converter. Particulate trapping in a plasma reactor can be accomplished by electrostatic precipitation. The soluble organic fraction of the trapped particulates can be utilized for the hydrocarbon-enhanced oxidation of NO to NO2. The NO2 can then be used to non-thermally oxidize the carbon fraction of the particulates. The oxidation of the carbon fraction by NO2 can lead to reduction of NOx or backconversion of NO2 to NO. This paper examines the hydrocarbon and electrical energy density requirements in a plasma for maximum NOx conversion in both heavy-duty and light-duty diesel engine exhaust. The energy density required for complete oxidation of hydrocarbons is also examined and shown to be much greater than that required for maximum NOx conversion. The reaction of NO2 with carbon is shown to lead mainly to backconversion of NO2 to NO.
X