Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effects of DTBP on the HCCI Combustion Characteristics of SI Primary Reference Fuels

2005-10-24
2005-01-3740
One option for ignition control of Homogeneous Charge Compression Ignition (HCCI) engines is to use small amounts of ignition-enhancing additives to alter the ignition properties. Di-tertiary Butyl Peroxide (DTBP) is one such additive and it has been suggested as a cetane improver in diesel engines. In this study, the effects of DTBP on spark ignition (SI) primary reference fuels (PRFs, n-heptane and iso-octane) and their blends (PRF20, PRF50, PRF63, PRF87 and PRF92) were investigated during HCCI engine operation. Experiments were run in a single cylinder CFR research engine for three inlet temperatures (410, 450 and 500 K) and several equivalence ratios (0.28 - 0.57) at a constant speed of 800 rpm and a compression ratio of 16.0. Experimental results show that ignition delay time, cycle to cycle variation, and stable operating range were all improved with the addition of less than 2.5% DTBP by volume.
Technical Paper

Fuel and Diluent Effects on Diesel Odor Species in a Premixed Flat Flame

1986-02-01
860221
As a group of diesel engine exhaust products, oxygenated hydrocarbons have been found to be responsible for the characteristic diesel odor. Contadictory effects of fuel properties on the emission levels of these species in both diesel engines and spray burner experiments have been reported. In the present study, a prevaporized premixed flat flame was used to investigate the fuel and diluent effects on these species. The results suggest a definite fuel effect on formation rates of oxygenates. In general, aromatic fuels produced higher concentration levels of oxygenates than paraffins, and the oxygenate concentration increases as the carbon number increases for the straight chain compounds. GC/MS analysis of the oxygenate fraction of the samples indicated a similar oxidation mechanism for all alkanes. Branching of alkanes was found to lead to more cyclization, but not always higher oxygenate levels.
Technical Paper

Some Observations on the Effects of EGR, Oxygen Concentration, and Engine Speed on the Homogeneous Charge Combustion of n-Heptane

2004-06-08
2004-01-1905
NOx and soot emissions remain critical issues in diesel engines. One method to address these problems is to achieve homogeneous combustion at lower peak temperatures - the goal of research on controlled autoignition. In this paper n-heptane is used to represent a large hydrocarbon fuel and some of the effects of internal and external EGR, oxygen concentration, and engine speed on its combustion have been examined through simulation and experiment. Simulations were conducted using our existing skeletal chemical kinetic model, which combines the chemistry of the low, intermediate, and high temperature regimes. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two stroke, water cooled engine. In the four-stroke engine experiments the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and engine modifications to increase internal EGR.
X