Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1985 Light-Duty Truck Fuel Economy

1980-10-01
801387
This paper addresses fuel economy standards that can be obtained in 1985 for two-wheel drive LDT's using existing technology. To estimate the fuel economy, the fleet of LDT's is first segmented into market classes based on the concept of utility. The 1985 sales share of each class is predicted from an extrapolation of current trends as well as published sales forecasts. The 1985 fuel economy of each market class is projected using 1) MY '80 truck technology and fuel economy as a baseline, 2) a regression equation that allows an estimate of fuel economy based on the weight, drag, and engine displacement, and 3) the addition of fuel-efficient technologies. Estimates of weight reduction and new model introduction within each market class were derived from published manufacturers' plans. Based on this methodology, this analysis concludes that a fleet fuel economy in excess of 24/25 mpg is feasible for 1985 without/with the use of diesel engines.
Standard

1995 Certified Power Engine Data for Kawasaki FX801V as used in 2017 General Purpose Engines - Level 2

2016-10-14
CURRENT
CPKW2_17FX801V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Technical Paper

1D-3D CFD Investigations to Improve the Performance of Two-Stroke Camless Engine

2024-04-09
2024-01-2686
The transportation sector still depends on conventional engines in many countries as the alternative technologies are not mature enough to reduce carbon footprints in society. The four-stroke diesel engines, primarily used for heavy-duty applications, need either high intake boosting or a large bore to produce higher torque and power output. There is an alternative where a four-stroke engine operated in two-stroke mode with the help of a fully flexible variable valve actuation (VVA) system can achieve similar power density without raising the intake boosting or engine size. A fully flexible VVA is required to control the valve events (lift, timing, and durations) independently so that the four-stroke events can be completed in one cycle. In this study, 1D-3D CFD coupled simulations were performed to develop a gas exchange process for better air entrapment in the cylinder and evacuate the exhaust products simultaneously.
Technical Paper

3-D Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1991-09-01
911789
Manufacturers of heavy-duty diesel engines are facing increasingly stringent, emission standards. These standards have motivated new research efforts towards improving the performance of diesel engines. The objective of the present program is to develop a comprehensive analytical model of the diesel combustion process that can be used to explore the influence of design changes. This will enable industry to predict the effect of these changes on engine performance and emissions. A major benefit of the successful implementation of such models is that engine development time and costs would be reduced through their use. The computer model is based on the three-dimensional KIVA-II code, with state-of-the-art submodels for spray atomization, drop breakup / coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, and soot and radiation.
Technical Paper

3D Aeroacoustics Simulation of a Complete Bus Exhaust System

2012-11-25
2012-36-0632
Health related problems in over populated areas are a major concern and as such, there are specific legislations for noise generated by transport vehicles. In diesel powered commercial vehicles, the source for noise are mainly related to rolling, transmission, aerodynamics and engine. Considering internal combustion engine, three factors can be highlighted as major noise source: combustion, mechanical and tailpipe. The tailpipe noise is considered as the noise radiated from the open terminations of intake and exhaust systems, caused by both pressure pulses propagating to the open ends of the duct systems, and by vortex shedding as the burst leaves the tailpipe (flow generated noise). In order to reduce noise generated by vehicles, it is important to investigate the gas interactions and what can be improved in exhaust line design during the product development phase.
Technical Paper

48 V Diesel Hybrid - Advanced Powertrain Solution for Meeting Future Indian BS 6 Emission and CO2 Legislations

2019-01-09
2019-26-0151
The legislations on emission reduction is getting stringent everywhere in the world. India is following the same trend, with Government of India (GOI) declaring the nationwide implementation of BS 6 legislation by April 2020 and Real Driving Emission (RDE) Cycle relevant legislation by 2023. Additionally GOI is focusing on reduction of CO2 emissions by introduction of stringent fleet CO2 targets through CAFE regulation, making it mandatory for vehicle manufacturers to simultaneously work on gaseous emissions and CO2 emissions. Simultaneous NOx emission reduction and CO2 reduction measures are divergent in nature, but with a 48 V Diesel hybrid, this goal can be achieved. The study presented here involves arriving at the right future hybrid-powertrain layout for a Sports Utility Vehicle (SUV) in the Indian scenario to meet the future BS 6 and CAFÉ legislations. Diesel engines dominate the current LCV and SUV segments in India and the same trend can be expected to continue in future.
Book

6th AVL International Commercial Powertrain Conference Proceedings (2011)

2011-05-25
The AVL International Commercial Powertrain Conference is the premier forum for truck, agricultural and construction equipment manufacturers to discuss powertrain technology challenges and solutions across their industries. The topics of the conference, which happens every two years, cover all five elements of a modern powertrain: engine, transmission, electric motor, battery and the electronic control which are used basically the same way in the quest for optimal efficiency and environmental compatibility. This event offers a unique opportunity for highly regarded professionals to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery. These proceedings are being co-published with SAE International, via a strategic partnership.
Technical Paper

A Band Variable-Inertia Flywheel Integrated-Urban Transit Bus Performance

1990-10-01
902280
By means of computer simulation, the potential of a Band Variable-Inertia Flywheel (BVIF) as an energy storage device for a diesel engine city bus is evaluated. Replacing both a fixed-inertia flywheel (FIF) and a continuously variable transmission (CVT), the BVIF is capable of accelerating a vehicle from rest to a nearly-constant speed, while recovering part of the kinetic energy normally dissipated through braking of the vehicle. The results are compared with that of conventionally-powered bus. A fuel saving of up to 30 percent is shown with the BVIF-integrated system. The regenerative braking system reduces brake wear by a factor of five in comparison with the conventional vehicle.
Technical Paper

A Basis for Estimating Mechanical Efficiency and Life of a Diesel Engine from its Size, Load Factor and Piston Speed

2011-09-13
2011-01-2211
Parameters like brake mean effective pressure, mean velocity of the piston, hardness of the wear surface, oil film thickness, and surface areas of critical wear parts are similar for all the diesel engines. The mean piston velocity at the rated speed is nearly the same for all the diesel engines. The mechanical efficiency normalized to an arbitrary brake mean effective pressure (bmep) is dependent on the size of the engine. The engine life seems to be proportional directly to the square of a characteristic dimension namely, cylinder bore of the engine and inversely to speed and load factor for engines varying widely in sizes and ratings.
Technical Paper

A CFD Multidimensional Approach to Hydraulic Components Design

2007-10-30
2007-01-4196
This paper presents a multidimensional approach to the hydraulic components design by means of an open-source fluid dynamics code. A preliminary study of a basic geometry was carried out by simulating the efflux of an incompressible fluid through circular pipes. Both laminar and turbulent conditions were analyzed and the influence of the grid resolution and modeling settings were investigated. A qualitative description of the internal flow-field distribution, and a quantitative comparison of pressure and velocity profiles along the pipe axis were used to asses the multidimensional open-source code capabilities. Moreover the results were compared with the experimental measurements available in literature and with the theoretical trends which can be found in well-known literature fundamentals (Hagen-Poiseuille theory and Nikuradse interpolation). Further comparison was performed by using a commercial CFD code.
Technical Paper

A Compact Cooling System (CCS™): The Key to Meet Future Demands in Heavy Truck Cooling

2001-05-14
2001-01-1709
To meet future needs for heavy truck cooling, a novel high performance radial compact cooling system (CCS) was developed. Measurements with a prototype system were conducted in a component wind tunnel and with truck-installed systems in a climatic vehicular wind tunnel. The CSS is compared to conventional axial and side-by-side systems. In comparison with a conventional axial system, the performance per unit volume of the CCS is 42% higher, the noise level is about 6 dB lower and the power consumption of the radial fan is 70% of the axial fan leading to significant savings in fuel consumption.
Technical Paper

A Comparative Study of Automotive System Fatigue Models Processed in the Time and Frequency Domain

2016-04-05
2016-01-0377
The objective of this paper is to demonstrate that frequency domain methods for calculating structural response and fatigue damage can be more widely applicable than previously thought. This will be demonstrated by comparing results of time domain vs. frequency domain approaches for a series of fatigue/durability problems with increasing complexity. These problems involve both static and dynamic behavior. Also, both single input and multiple correlated inputs are considered. And most important of all, a variety of non-stationary loading types have been used. All of the example problems investigated are typically found in the automotive industry, with measured loads from the field or from the proving ground.
Technical Paper

A Comparison Of The Dynamic Performance Of A U.S. And A European Heavy Vehicle

1988-09-01
885111
Despite the general similarity of U.S. and European heavy trucks, there are differences in design properties that affect braking and turning performance. A European tractor-semitrailer was studied for the purpose of comparing its properties to those of U.S. vehicles and assessing the comparative performance. Mass, suspension, and braking system properties of the European tractor and semitrailer were measured in the laboratory and on the proving ground. Turning and braking performance qualities were evaluated by computer simulation and by experimental tests. In turning performance the European combination had a 9 percent advantage in rollover threshold, compared to a generic U.S. vehicle with properties that were in the midrange of U.S. design practice. Higher suspension roll stiffness and higher chassis weight on the European tractor and semitrailer accounted for the higher threshold.
Journal Article

A Comparison of Full Scale Aft Cavity Drag Reduction Concepts With Equivalent Wind Tunnel Test Results

2013-09-24
2013-01-2429
Comparison studies have been conducted on a 1:16th scale model and a full scale tractor trailer of a variety of sealed aft cavity devices as a means to develop or enhance commercial drag reduction technology for class 8 vehicles. Various base cavity geometries with pressure taps were created for the scale model. The studies confirmed that length has an important effect on performance. The interaction of the boat-tailed aft cavity with other drag reduction devices, specifically side skirts, was investigated with results showing no discernable drag performance interaction between them. Overall, the experiments show that a boat-tailed aft cavity can reduce the drag up to 13%. Full-scale tests of a commercially derived product based on these scale tests were also completed using SAE Type II testing procedures. Full-scale tests indicated a fuel savings of over 6.5%.
Technical Paper

A Comparison of HEV Engine Operation and HD Engine Emissions Test Cycles

2000-12-04
2000-01-3469
Currently, all heavy-duty on-road engines in the USA are certified for emissions compliance using the Federal Test Procedure (FTP) heavy-duty transient cycle. The engine in a hybrid drive system, on the other hand, is controlled at a more steady-state level to reduce emissions over conventional drive systems. In this study, Allison Electric Drive seeks a better standardized emissions test cycle to certify (in the near term) engines which will be used in parallel and series hybrid drive systems. Actual revenue service data from a transit hybrid electric vehicle (HEV) was compared to several standard engine test cycles including the US FTP, ISO 8178 (a collection of many steady-state cycles), the Euro III (ESC) 13-mode cycle, and the Japanese 13-mode cycle. Graphical analysis of actual hybrid engine data revealed that the ESC cycle reflects field data better than other cycles, including the US FTP, which has little correlation.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

A Comprehensive Phenomenological Model of the Jet Mixing Process in D.I. Diesel Engines

1986-09-01
861273
The paper describes a detailed mathematical analysis of the problem of jet mixing in swirling or transverse flow fields under non-isothermal, non-isodense conditions. The model takes into account potential core effects, cross sectional distortion and differences in profiles between the distributed properties (velocity, concentration, temperature and density). Comparisons with a wide range of experimental results have produced excellent agreement.
Technical Paper

A Computational Investigation into the Effects of Included Spray Angle on Heavy-Duty Diesel Engine Operating Parameters

2012-09-10
2012-01-1714
Effects of included spray angle with different injection strategies on combustion characteristics, performance and amount of pollutant emission have been computationally investigated in a common rail heavy-duty DI diesel engine. The CFD model was firstly validated with experimental data achieved from a Caterpillar 3401 diesel engine for a conventional part load condition at 1600 rev/min. Three different included spray angles (α = 145°, 105°, 90°) were studied in comparison with the traditional spray injection angle (α = 125°). The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that 105° spray cone angle along with an optimized split pre- and post-Top Dead Center (TDC) injection strategy could significantly reduce NOx and soot emissions without much penalty of the fuel consumption, as compared to the wide spray angle.
Technical Paper

A Computer Cooling System Study of a Diesel Powered Truck for Control of Transient Coolant, Oil and Cab Temperatures

1982-02-01
821049
A Vehicle-Engine-Cooling (VEC) system computer simulation model was used to study the transient performance of control devices and their temperature settings on oil, coolant and cab temperatures. The truck used in the study was an International Harvester COF-9670 cab over chassis heavy-duty vehicle equipped with a standard cab heater, a Cummins NTC-350 diesel engine with a McCord radiator and standard cooling system components and aftercooler. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the VEC system computer simulation model. The control devices investigated were the standard thermostat, the Kysor fan-clutch and shutter system. The effect of shutterstat location on shutter performance along with thermostat, shutter and fan activation temperature settings were investigated for ambient temperatures of 32, 85 and 100°F.
X