Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Designing a High Voltage Energy Storage System for a Parallel-Through-The-Road Plug-In Hybrid Electric Vehicle

2013-04-08
2013-01-0557
A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle is being created by modifying a 2013 Chevrolet Malibu. This is being accomplished by replacing the stock 2.4L gasoline engine which powers the front wheels of the vehicle with a 1.7L diesel engine and by placing a high voltage electric motor in the rear of the vehicle to power the rear wheels. In order to meet the high voltage needs of the vehicle created by the PTTR hybrid architecture, an energy storage system (ESS) will need to be created. This paper explains considerations, such as location, structure integrity, and cooling, which are needed in order to properly design an ESS.
Technical Paper

Development of a Switching Roller Finger Follower for Cylinder Deactivation in Gasoline Engine Applications

2013-04-08
2013-01-0589
A cylinder deactivation system has been developed for use on dual overhead camshaft (DOHC), roller finger follower valvetrain engine applications. Cylinder deactivation is emerging as an effective means to reduce fuel consumption in vehicles, especially those equipped with V6 or V8 engines. This paper addresses a new system that accomplishes this function through the use of a switching roller finger follower (SRFF). This system includes key design features that allow application of the SRFF without affecting overall width, height, or length of DOHC engines. Emphasis was placed on reducing the moment of inertia over the SRFF pivot without compromising rocker arm stiffness. The switching mechanism for transitioning between normal and deactivated operation is hydraulically actuated with engine oil. The switching windows are identified in terms of temperature, pressure, and engine speed. High engine speed test results show stable valvetrain dynamics above 7000 rpm engine speed.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Effect of Intake Valve Profile Modulation on Passenger Car Fuel Consumption

2018-04-03
2018-01-0379
Variable valve actuation is a focus to improve fuel efficiency for passenger car engines. Various means to implement early and late intake valve closing (E/LIVC) at lower load operating conditions is investigated. The study uses GT Power to simulate on E/LIVC on a 2.5 L gasoline engine, in-line four cylinder, four valve per cylinder engine to evaluate different ways to achieve Atkinson cycle performance. EIVC and LIVC are proven methods to reduce the compression-to-expansion ratio of the engine at part load and medium load operation. Among the LIVC strategies, two non-traditional intake valve lift profiles are investigated to understand their impact on reduction of fuel consumption at low engine loads. Both the non-traditional lift profiles retain the same maximum lift as a normal intake valve profile (Otto-cycle) unlike a traditional LIVC profile (Atkinson cycle) which needs higher maximum lift.
Technical Paper

Final Tier 4 Emission Solution Using An Aftertreatment System With A Fuel Reformer, LNT, DPF And Optional SCR

2011-09-13
2011-01-2197
Diesel exhaust aftertreatment systems are required for meeting Final Tier 4 emission regulations. This paper addresses an aftertreatment system designed to meet the Final Tier 4 emission standards for nonroad vehicle markets. The aftertreatment system consists of a fuel dosing system, mixing elements, fuel vaporizer, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF), and an optional selective catalytic reduction (SCR) catalyst. Aftertreatment system performance, both with and without the SCR, was characterized in an engine dynamometer test cell, using a 4.5 liter, pre-production diesel engine. The engine out NOx nominally ranged between 1.6 and 2.0 g/kW-hr while all operating modes ranged between 1.2 and 2.8 g/kW-hr. The engine out particulate matter was calibrated to approximately 0.1 g/kW-hr for various power ratings. Three engine power ratings of 104 kW, 85 kW and 78 kW were evaluated.
Technical Paper

Frictional Differences between Rolling and Sliding Interfaces for Passenger Car Switching Roller Finger Followers

2018-04-03
2018-01-0382
The demand for improving fuel economy in passenger cars is continuously increasing. Eliminating energy losses within the engine is one method of achieving fuel economy improvement. Frictional energy losses account for a noticeable portion of the overall efficiency of an engine. Valvetrain friction, specifically at the camshaft interface, is one area where potential for friction reduction is evident. Several factors can impact the friction at the camshaft interface. Some examples include: camshaft lobe profile, rocker arm interface geometry, valve spring properties, material properties, oil temperature, and oil pressure. This paper discusses the results of a series of tests that experimented the changes in friction that take place as these factors are altered. The impact of varying testing conditions such as oil pressure and oil temperature was evaluated throughout the duration of the testing and described herein.
Technical Paper

Quantification of Diesel Engine Vibration Using Cylinder Deactivation for Exhaust Temperature Management and Recipe for Implementation in Commercial Vehicles

2018-04-03
2018-01-1284
Commercial vehicles require continual improvements in order to meet fuel emission standards, improve diesel aftertreatment system performance and optimize vehicle fuel economy. Aftertreatment systems, used to remove engine NOx, are temperature dependent. Variable valve actuation in the form of cylinder deactivation (CDA) has been shown to manage exhaust temperatures to the aftertreatment system during low load operation (i.e., under 3-4 bar BMEP). During cylinder deactivation mode, a diesel engine can have higher vibration levels when compared to normal six cylinder operation. The viability of CDA needs to be implemented in a way to manage noise, vibration and harshness (NVH) within acceptable ranges for today’s commercial vehicles and drivelines. A heavy duty diesel engine (inline 6 cylinder) was instrumented to collect vibration data in a dynamometer test cell.
X