Refine Your Search

Topic

Search Results

Technical Paper

Radar Detection of High Concentrations of Ice Particles - Methodology and Preliminary Flight Test Results

2019-06-10
2019-01-2028
High Ice Water Content (HIWC) has been identified as a primary causal factor in numerous engine events over the past two decades. Previous attempts to develop a remote detection process utilizing modern commercial radars have failed to produce reliable results. This paper discusses the reasons for previous failures and describes a new technique that has shown very encouraging accuracy and range performance without the need for any modifications to industry’s current radar design(s). The performance of this new process was evaluated during the joint NASA/FAA HIWC RADAR II Flight Campaign in August of 2018. Results from that evaluation are discussed, along with the potential for commercial application, and development of minimum operational performance standards for future radar products.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

Thermal Model Correlation for Mars Reconnaissance Orbiter

2007-07-09
2007-01-3243
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun.
Technical Paper

Next Generation NASA GA Advanced Concept

2006-08-30
2006-01-2430
Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.
Technical Paper

NASA Personal Air Transportation Technologies

2006-08-30
2006-01-2413
The ability to personalize air travel through the use of an on-demand, highly distributed air transportation system will provide the degree of freedom and control that Americans enjoy in other aspects of their life. This new capability, of traveling when, where, and how we want with greatly enhanced mobility, accessibility, and speed requires vehicle and airspace technologies to provide the equivalent of an internet PC ubiquity, to an air transportation system that now exists as a centralized hub and spoke mainframe NASA airspace related research in this new category of aviation has been conducted through the Small Aircraft Transportation (SATS) project, while the vehicle technology efforts have been conducted in the Personal Air Vehicle sector of the Vehicle Systems Program.
Technical Paper

The Third Wave of Aeronautics: On-Demand Mobility

2006-08-30
2006-01-2429
Aviation has experienced one hundred years of dynamic growth and change, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. The first fifty years of aviation was a very chaotic, rapid evolutionary process involving disruptive technologies that required frequent adaptation. The second fifty years produced a stable evolutionary optimization of services based on achieving an objective function of decreased costs. In the third wave of aeronautics over the next fifty years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient, and environmentally fare and friendly system.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Performance Automotive Applications of Pressure-Sensitive Paint in the Langley Full Scale Tunnel

2002-12-02
2002-01-3291
Recently, there has been a strong emphasis on aerodynamic and aeroacoustic wind tunnel testing of automobiles. While significant level resources have been spent on investigating aerodynamics, the methodology has not changed appreciably since the beginning of aerodynamics as a science. Over the past decade, a number of global flow diagnostic techniques have been developed that drastically increase the quality and quantity of data from wind tunnel testing. One of these technologies is the use of pressure sensitive luminescent coatings, known as pressure-sensitive paint, a method which has matured considerably since its inception and is now used extensively in aerospace applications with good results. The goal of this research is to implement this technology in the full scale testing of high performance automotive vehicles. This paper discusses the details of a preliminary test, such as technique, paint formulation, camera and lighting hardware, and data reduction and analysis.
Technical Paper

Spin Resistance Development for Small Airplanes - A Retrospective

2000-05-09
2000-01-1691
With the resurgence of the General Aviation industry, the incentive to develop new airplanes for the low-end market has increased. Increased production of small airplanes provides the designers and manufacturers the opportunity to incorporate advanced technologies that are not readily retrofitable to existing designs. Spin resistance is one such technology whose development was concluded by NASA during the 1980’s when the production of small airplanes had slipped into near extinction. This paper reviews the development of spin resistance technology for small airplanes with emphasis on wing design. The definition of what constitutes spin resistance and the resulting amendment of the Federal Aviation Regulations Part 23 to enable certification of spin resistant airplanes are also covered.
Technical Paper

An Experimental Investigation of the Flow Over the Rear End of a Notchback Automobile Configuration

2000-03-06
2000-01-0489
An experimental investigation of the flow over the rear end of a 0.16 scale notchback automobile configuration has been conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART). The objective of this work was to investigate the flow separation that occurs behind the backlight and obtain experimental data that can be used to understand the physics and time-averaged structure of the flow field. A three-component laser velocimeter was used to make non-intrusive, velocity measurements in the center plane and in a single cross-flow plane over the decklid. In addition to off-body measurements, flow conditions on the car surface were documented via surface flow visualization, boundary layer measurements, and surface pressures.
Technical Paper

Development of Race Car Testing at the Langley Full-Scale Tunnel

1998-11-16
983040
This paper reviews the development of a new test capability for race cars at the Langley Full-Scale Tunnel. The existing external force balance of the Langley Full-Scale Tunnel, designed for use with full-scale aircraft, was reconfigured for automobile testing. Details of structural modifications relevant to supporting cars and force measurements are shown. A specialized automobile force balance, measuring vehicle drag and individual wheel downforce, was then designed, constructed and calibrated. The design was governed by simplicity and low cost and was tailored to the stock car racing community. The balance became fully operational in early 1998. The overall layout of the automobile balance and comparisons to reference data from another full-scale wind tunnel is presented.
Technical Paper

A Simplified Orbit Analysis Program for Spacecraft Thermal Design

1997-07-01
972540
This paper presents a simplified orbit analysis program developed to calculate orbital parameters for the thermal analysis of spacecraft and space-flight instruments. The program calculates orbit data for inclined and sunsynchronous earth orbits. Traditional orbit analyses require extensive knowledge of orbital mechanics to produce a simplified set of data for thermal engineers. This program was created to perform orbital analyses with minimal input and provides the necessary output for thermal analysis codes. Engineers will find the program to be a valuable analysis tool for fast and simple orbit calculations. A description of the program inputs and outputs is included. An overview of orbital mechanics for inclined and Sun-synchronous orbits is also presented. Finally, several sample cases are presented to illustrate the thermal analysis applications of the program.
Technical Paper

Overview of Noise Reduction Technology in the NASA Short Haul (Civil Tiltrotor) Program

1996-11-18
962273
Noise is a barrier issue for penetration of civil markets by future tiltrotor aircraft. To address this issue, elements of the NASA Short Haul (Civil Tiltrotor) [SH(CT)] program are working in three different areas: noise abatement, noise reduction, and noise prediction. Noise abatement refers to modification of flight procedures to achieve quieter approaches. Noise reduction refers to innovative new rotor designs that would reduce the noise produced by a tiltrotor. Noise prediction activities are developing the tools to guide the design of future quiet tiltrotors. This paper presents an overview of SH(CT) activities in all three areas, including sample results.
Technical Paper

Recent Developments of Experimental Techniques and Their Applications at NASA Langley Research Center

1994-03-01
940419
The need for highly accurate measurements of velocity, temperature, pressure and density has required the development of new experimental techniques. While the majority of these development efforts at NASA Langley are focused toward applications for aeronautical programs such as the High-Speed Civil Transport, Advanced Subsonic Transport, and the National Aero-Space Plane, a number are applicable to other fields. The intent of this paper is to review recent instrumentation developments and applications at NASA Langley Research Center that may have applications in automotive testing. Five experimental techniques are described along with recent results obtained in NASA facilities.
Technical Paper

Hybrid Laminar Flow Control Applied to Advanced Turbofan Engine Nacelles

1992-04-01
920962
In recent years, the National Aeronautics and Space Administration (NASA) in cooperation with U.S. industry has performed flight and wind-tunnel investigations aimed at demonstrating the feasibility of obtaining significant amounts of laminar boundary-layer flow at moderate Reynolds numbers on the swept-back wings of commercial transport aircraft. Significant local drag reductions have been recorded with the use of a hybrid laminar flow control (HLFC) concept. In this paper, we address the potential application of HLFC to the external surface of an advanced, high bypass ratio turbofan engine nacelle with a wetted area which approaches 15 percent of the wing total wetted area of future commercial transports. A pressure distribution compatible with HLFC is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer.
Technical Paper

Application of Laminar Flow Control to High-Bypass-Ratio Turbofan Engine Nacelles

1991-09-01
912114
Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-fiow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.
Technical Paper

Wingtip Vortex Turbine Investigation for Vortex Energy Recovery

1990-09-01
901936
A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15° twist (washin) and one with no twist. The power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.
Technical Paper

Orbiter Post-Tire Failure and Skid Testing Results

1989-09-01
892338
An investigation was conducted at the NASA Langley Research Center's Aircraft Landing Dynamics Facility (ALDF) to define the post-tire failure drag characteristics of the Space Shuttle Orbiter main tire and wheel assembly. Skid tests on various materials were also conducted to define their friction and wear rate characteristics under higher speed and bearing pressures than any previous tests. The skid tests were conducted to support a feasibility study of adding a skid to the orbiter strut between the main tires to protect an intact tire from failure due to overload should one of the tires fail. Roll-on-rim tests were conducted to define the ability of a standard and a modified orbiter main wheel to roll without a tire. Results of the investigation are combined into a generic model of strut drag versus time under failure conditions for inclusion into rollout simulators used to train the shuttle astronauts.
Technical Paper

Fifty Years of Laminar Flow Flight Testing

1988-10-01
881393
Laminar flow flight experiments conducted over the past fifty years will be reviewed. The emphasis will be on flight testing conducted under the NASA Laminar Flow Control Program which has been directed towards the most challenging technology application- the high subsonic speed transport. The F111/TACT NLF Glove Flight Test, the F-14 Variable Sweep Transition Flight Experiment, the 757 Wing Noise Survey and NLF Glove Flight Test, the NASA Jetstar Leading Edge Flight Test Program, and the recently initiated Hybrid Laminar Flow Control Flight Experiment will be discussed. To place these recent experiences in perspective, earlier important flight tests will first be reviewed to recall the lessons learned at that time.
X