Refine Your Search

Topic

Author

Search Results

Journal Article

Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass

2014-01-15
2013-01-9092
Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg−1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Journal Article

Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a Light Duty Spark Ignited Engine

2016-10-17
2016-01-2293
The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas.
Journal Article

Ionization Signal Response during Combustion Knock and Comparison to Cylinder Pressure for SI Engines

2008-04-14
2008-01-0981
In-cylinder ion sensing is a subject of interest due to its application in spark-ignited (SI) engines for feedback control and diagnostics including: combustion knock detection, rate and phasing of combustion, and mis-fire On Board Diagnostics (OBD). Further advancement and application is likely to continue as the result of the availability of ignition coils with integrated ion sensing circuitry making ion sensing more versatile and cost effective. In SI engines, combustion knock is controlled through closed loop feedback from sensor metrics to maintain knock near the borderline, below engine damage and NVH thresholds. Combustion knock is one of the critical applications for ion sensing in SI engines and improvement in knock detection offers the potential for increased thermal efficiency. This work analyzes and characterizes the ionization signal in reference to the cylinder pressure signal under knocking and non-knocking conditions.
Journal Article

Development of a Virtual CFR Engine Model for Knocking Combustion Analysis

2018-04-03
2018-01-0187
Knock is a major bottleneck to achieving higher thermal efficiency in spark ignition (SI) engines. The overall tendency to knock is highly dependent on fuel anti-knock quality as well as engine operating conditions. It is, therefore, critical to gain a better understanding of fuel-engine interactions in order to develop robust knock mitigation strategies. In the present work, a numerical model based on three-dimensional (3-D) computational fluid dynamics (CFD) was developed to capture knock in a Cooperative Fuel Research (CFR) engine. For combustion modeling, a hybrid approach incorporating the G-equation model to track turbulent flame propagation, and a homogeneous reactor multi-zone model to predict end-gas auto-ignition ahead of the flame front and post-flame oxidation in the burned zone, was employed.
Journal Article

Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

2017-03-28
2017-01-0671
Previous studies have shown that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flame speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed.
Journal Article

Meeting RFS2 Targets with an E10/E15-like Fuel - Experimental and Analytical Assessment of Higher Alcohols in Multi-component Blends with Gasoline

2013-10-14
2013-01-2612
This paper evaluates the potential of adding higher alcohols to gasoline blendstock in an attempt to improve overall fuel performance. The alcohols considered include ethanol, normal- and iso-structures of propanol, butanol and pentanol as well as normal-hexanol (C2-C6). Fuel performance is quantified based on energy content, knock resistance as well as petroleum displacement and promising multi-component blends are systematically identified based on property prediction methods. These promising multi-component blends, as well as their respective reference fuels, are subsequently tested for efficiency and emissions performance utilizing a gasoline direct injection, spark ignition engine. The engine test results confirm that combustion and efficiency of tailored multi-component blends closely match those of the reference fuels. Regulated emissions stemming from combustion of these blends are equal or lower compared to the reference fuels across the tested engine speed and load regime.
Journal Article

Gaseous and Particulate Emissions Using Isobutanol-Extended Fuel in Recreational Marine Two-Stroke and Four-Stroke Engines

2014-11-11
2014-32-0087
Biologically derived isobutanol, a four carbon alcohol, has an energy density closer to that of gasoline and has potential to increase biofuel quantities beyond the current ethanol blend wall. When blended at 16 vol% (iB16), it has identical energy and oxygen content of 10 vol% ethanol (E10). Engine dynamometer emissions tests were conducted on two open-loop electronic fuel-injected marine outboard engines of both two-stroke and four-stroke designs using indolene certification fuel (non-oxygenated), iB16 and E10 fuels. Total particulate emissions were quantified using Sohxlet extraction to determine the amount of elemental and organic carbon. Data indicates a reduction in overall total particulate matter relative to indolene certification fuel with similar trends between iB16 and E10. Gaseous and PM emissions suggest that iB16, relative to E10, could be promising for increasing the use of renewable fuels in recreational marine engines and fuel systems.
Technical Paper

Analytical Approach to Characterize the Effect of Engine Control Parameters and Fuel Properties on ACI Operation in a GDI Engine

2020-04-14
2020-01-1141
Advanced compression ignition (ACI) operation in gasoline direct injection (GDI) engines is a promising concept to reduce fuel consumption and emissions at part load conditions. However, combustion phasing control and the limited operating range in ACI mode are a perennial challenge. In this study the combined impact of fuel properties and engine control strategies in ACI operation are investigated. A design of experiments method was implemented using a three level orthogonal array to determine the sensitivity of engine control parameters on the engine load, combustion noise and stability under low load ACI operation for three RON 98 gasoline fuels, each exhibiting disparate chemical composition. Furthermore, the thermodynamic state of the compression histories was studied with the aid of the pressure-temperature framework.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

Effects of Ethanol Additives on Diesel Particulate and NOx Emissions

2001-05-07
2001-01-1937
Particulate and nitrogen oxide emissions from a 1.9-liter Volkswagen diesel engine were measured for three different fuels: neat diesel fuel, a blend of diesel fuel with 10% ethanol, and a blend of diesel fuel with 15% ethanol. Engine-out emissions were measured on an engine dynamometer for five different speeds and five different torques using the standard engine-control unit. Results show that particulate emissions can be significantly reduced over approximately two-thirds of the engine map by using a diesel-ethanol blend. Nitrogen oxide emissions can also be significantly reduced over a smaller portion of the engine map by using a diesel-ethanol blend. Moreover, there is an overlap between the regions where particulate emissions can be reduced by up to 75% and nitrogen oxide emissions are reduced by up to 84% compared with neat diesel fuel.
Technical Paper

Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

2017-03-28
2017-01-0661
Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5.
Technical Paper

Evaluation of Ethanol Blends for Plug-In Hybrid Vehicles Using Engine in the Loop

2012-04-16
2012-01-1280
Their easy availability, lower well-to-wheel emissions, and relative ease of use with existing engine technologies have made ethanol and ethanol-gasoline blends a viable alternative to gasoline for use in spark-ignition (SI) engines. The lower energy density of ethanol and ethanol-gasoline blends, however, results in higher volumetric fuel consumption compared with gasoline. Also, the higher latent heat of vaporization can result in cold-start issues with higher-level ethanol blends. On the other hand, a higher octane number, which indicates resistance to knock and potentially enables more optimal combustion phasing, results in better engine efficiency, especially at higher loads. This paper compares the fuel consumption and emissions of two ethanol blends (E50 and E85) with those for gasoline when used in conventional (non-hybrid) and power-split-type plug-in hybrid electric vehicles (PHEVs).
Technical Paper

Evaluation of Ignition Timing Predictions Using Control-Oriented Models in Kinetically-Modulated Combustion Regimes

2012-04-16
2012-01-1136
Knock integrals and corresponding ignition delay (τ) correlations are often used in model-based control algorithms in order to predict ignition timing for kinetically modulated combustion regimes such as HCCI and PCCI. They can also be used to estimate knock-inception during conventional SI operation. The purpose of this study is to investigate the performance of various τ correlations proposed in the literature, including those developed based on fundamental data from shock tubes and rapid compression machines, those based on predictions from isochoric simulations using detailed chemical kinetic mechanisms, and those deduced from data of operating engines. A 0D engine simulation framework is used to compare the correlation performance where evaluations are based on the temperatures required at intake valve closure (TIVC) in order to achieve a fixed CA50 point over a range of conditions.
Technical Paper

Comparison of In-Nozzle Flow Characteristics of Naphtha and N-Dodecane Fuels

2017-03-28
2017-01-0853
It is well known that in-nozzle flow behavior can significantly influence the near-nozzle spray formation and mixing that in turn affect engine performance and emissions. This in-nozzle flow behavior can, in turn, be significantly influenced by fuel properties. The goal of this study is to characterize the behavior of two different fuels, namely, a straight-run naphtha that has an anti-knock index of 58 (denoted as “Full-Range Naphtha”) and n-dodecane, in a simulated multi-hole common-rail diesel fuel injector. Simulations were carried out using a fully compressible multi-phase flow representation based on the mixture model assumption with the Volume of Fluid method. Our previous studies have shown that the characteristics of internal and near-nozzle flow are strongly related to needle motion in both the along- and off-axis directions.
Technical Paper

Investigation of Combustion Knock Distribution in a Boosted Methane-Gasoline Blended Fueled SI Engine

2018-04-03
2018-01-0215
The characteristics of combustion knock metrics over a number of engine cycles can be an essential reference for knock detection and control in internal combustion engines. In a Spark-Ignition (SI) engine, the stochastic nature of combustion knock has been shown to follow a log-normal distribution. However, this has been derived from experiments done with gasoline only and applicability of log-normal distribution to dual-fuel combustion knock has not been explored. To evaluate the effectiveness and accuracy of log-normal distributed knock model for methane-gasoline blended fuel, a sweep of methane-gasoline blend ratio was conducted at two different engine speeds. Experimental investigation was conducted on a single cylinder prototype SI engine equipped with two fuel systems: a direct injection (DI) system for gasoline and a port fuel injection (PFI) system for methane.
Technical Paper

Development and Validation of a Three Pressure Analysis (TPA) GT-Power Model of the CFR F1/F2 Engine for Estimating Cylinder Conditions

2018-04-03
2018-01-0848
The CFR engine is the widely accepted platform to test standard Research Octane Number (RON) and Motored Octane Number (MON) for determining anti-knock characteristics of motor fuels. With increasing interest in engine downsizing, up-torquing, and alternative fuels for modern spark ignition (SI) engines, there is a need to better understand the conditions that fuels are subjected to in the CFR engine during octane rating. To take into account fuel properties, such as fuel heat of vaporization, laminar flame speed and auto-ignition chemistry; and understand their impacts on combustion knock, it is essential to estimate accurate cylinder conditions. In this study, the CFR F1/F2 engine was modeled using GT-Power with the Three Pressure Analysis (TPA) and the model was validated for different fuels and engine conditions.
Technical Paper

Detailed Morphological Properties of Nanoparticles from Gasoline Direct Injection Engine Combustion of Ethanol Blends

2013-09-08
2013-24-0185
Detailed properties of particulate matter (PM) emissions from a gasoline direct injection (GDI) engine were analyzed in terms of size, morphology, and nanostructures, as gasoline and its ethanol blend E20 were used as a fuel. PM emissions were sampled from a 0.55L single-cylinder GDI engine by means of a scanning mobility particle sizer (SMPS) for size measurements and a self-designed thermophoretic sampling device for the subsequent analyses of size, morphology and nanostructures using a transmission electron microscope (TEM). The particle sizes were evaluated with variations of air-fuel equivalence ratio and fuel injection timing. The most important result from the SMPS measurements was that the number of nucleation-mode nanoparticles (particularly those smaller than 10 - 15 nm) increased significantly as the fuel injection timing was advanced to the end-of-injection angle of 310° bTDC.
Technical Paper

The Impact of Cellulosic Ethanol on the Performance and Emissions of a Circle Track Race Car

2013-04-08
2013-01-1149
Ethanol has received both positive and negative attention as a renewable fuel for spark ignition engines. Studies of ethanol have shown improved volumetric efficiency, knock tolerance, and favorable burn curves[1]. Nevertheless, little research has been published exploring the impact of ethanol blends on race engine performance coupled with the impact on well-to-wheels (WTW) greenhouse gases, emissions, and petroleum reduction. In this work, a circle track race vehicle powered by a GM Performance Parts 6.2L OHV CT-525 engine was tested using 100 octane race fuel and E85 over a matrix of configurations. Carburetion vs. fuel injection configurations were benchmarked with both fuels, with the addition of 100- and 300-cells-per-inch catalytic convertors. Testing involved both dynamometer testing and on-track testing utilizing a portable emissions measurement system.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part II - Blend Properties and Target Value Sensitivity

2013-04-08
2013-01-1126
Higher carbon number alcohols offer an opportunity to meet the Renewable Fuel Standard (RFS2) and improve the energy content, petroleum displacement, and/or knock resistance of gasoline-alcohol blends from traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part II of this paper builds upon the alcohol selection, fuel implementation scenarios, criteria target values, and property prediction methodologies detailed in Part I. For each scenario, optimization schemes include maximizing energy content, knock resistance, or petroleum displacement. Optimum blend composition is very sensitive to energy content, knock resistance, vapor pressure, and oxygen content criteria target values. Iso-propanol is favored in both scenarios' suitable blends because of its high RON value.
X