Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Individual Cylinder Combustion Control Based on Real-Time Processing of Ion Current Signals

2007-04-16
2007-01-1510
The paper presents the main results of a research activity focused on the analysis, development, and real time implementation of a closed-loop, individual cylinder combustion control system, based on ion sensing technology. The innovative features of the proposed control system consist of extracting combustion quality related information from the ion current signal, and of using such information, together with pre-defined look-up-tables, for feedback control of the spark advance throughout the entire engine operating range. In particular, the ion current signal processing algorithm that is carried out in real-time, initially determines whether knocking is affecting or not the actual combustion process.
Technical Paper

Development of A Control-Oriented Model of Engine, Transmission and Vehicle Systems for Motor Scooter HIL Testing

2009-06-15
2009-01-1779
This paper describes the development of a mathematical model which allows the simulation of the Internal Combustion Engine (ICE), the transmission and the vehicle dynamics of a motor vehicle equipped with a Continuously Variable Transmission (CVT) system. The aim of this work is to realize a simulation tool that is able to evaluate the performance and the operating conditions of the ICE, once it is installed on a given vehicle. Since the simulation has to be run in real-time for Hardware In the Loop (HIL) applications, a zero-dimensional (filling and emptying) model is used for modeling the cylinder thermodynamics and the intake and exhaust manifolds. The combustion is modeled by means of single zone model, with the fuel burning rate described by Wiebe functions. The gas proprieties depend on temperature and chemical composition of the gas, which are evaluated at each crank-angle.
Technical Paper

Strategies to Evaluate Power Output in Racing Engines. Case Study: 2002 World Offshore Class I Regulations

2002-12-02
2002-01-3328
To establish a fair competition between racing vehicles is not an easy task, if different types of engine are allowed to participate (within the same class). In the Motorsports world there are several Championships where the regulations leave to the project manager substantial freedom in the vehicle-engine layout definition: The 2002 World Offshore Class I Championship (WOCC) seems to be an excellent example, since both gasoline and diesel (naturally aspirated and turbocharged) engines are admitted to race. The paper presents a power output comparison method that could be useful both for the organizers to establish a fair competition as well as for the racing engineers to decide what's the optimal layout. Since the analysis regards the maximum power, BMEP and engine speed have to be evaluated under such condition for the engines to be compared.
Technical Paper

Evaluation of Wide Open Throttle Torque Production based on Engine Acoustic Emission

2002-03-04
2002-01-0456
The paper presents the development of a methodology for the evaluation of the Wide-Open-Throttle (WOT) torque production when the engine is running free. Under such conditions the engine speed shows a sudden increase due to the high engine torque production associated with the WOT conditions, and to the absence of a load connected to the engine. The acoustic emission of the engine contains information related to this speed increase and thus to the engine torque production. The methodology unveils the information contained in the engine acoustic emission to estimate the torque produced under WOT operating conditions. This estimation can be performed without the need of coupling the engine to a brake, and does not require installing any additional sensor. For this reason the approach here presented could be very useful for engine testing at the end of the assembly line.
Technical Paper

Air-Fuel Ratio Control for a High Performance Engine using Throttle Angle Information

1999-03-01
1999-01-1169
This paper presents the development of a model-based air/fuel ratio controller for a high performance engine that uses, in addition to other usual signals, the throttle angle to enable predictive air mass flow rate estimation. The objective of the paper is to evaluate the possibility to achieve a finer air/fuel ratio control during transients that involve sudden variations in the physical conditions inside the intake manifold, due, for example, to fast throttle opening or closing actions. The air mass flow rate toward the engine cylinders undertakes strong variation in such transients, and its correct estimation becomes critical mainly because of the time lag between its evaluation and the instant when the air actually enters the cylinders.
X