Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Technical Paper

Vehicle System Impacts of Fuel Cell System Power Response Capability

2002-06-03
2002-01-1959
The impacts of fuel cell system power response capability on optimal hybrid and neat fuel cell vehicle configurations have been explored. Vehicle system optimization was performed with the goal of maximizing fuel economy over a drive cycle. Optimal hybrid vehicle design scenarios were derived for fuel cell systems with 10 to 90% power transient response times of 0, 2, 5, 10, 20, and 40 seconds. Optimal neat fuel cell vehicles where generated for responses times of 0, 2, 5, and 7 seconds. DIRECT, a derivative-free optimization algorithm, was used in conjunction with ADVISOR, a vehicle systems analysis tool, to systematically change both powertrain component sizes and the vehicle energy management strategy parameters to provide optimal vehicle system configurations for the range of response capabilities.
Technical Paper

Using the Cone Calorimeter to Predict FMVSS 302 Performance of Interior and Exterior Automotive Materials

2006-04-03
2006-01-1270
Forty-eight materials from parts used inside and outside the passenger compartment of six motor vehicles were tested according to FMVSS 302. All samples passed the test although the FMVSS 302 test requirements do not apply to exterior materials. The same materials were also tested in the Cone Calorimeter (ASTM E 1354) at three heat fluxes. The FMVSS 302 performance diagram developed earlier on the basis of Cone Calorimeter data for 18 exterior materials from two vehicles appears to have more general validity for solid plastic parts, regardless whether they are taken from locations inside or outside of the passenger compartment. The previously-developed performance diagram is not applicable to plastic foams and fabrics. Additional criteria are proposed to predict whether a foam or fabric is likely to pass the FMVSS 302 test based on ignition time and peak heat release rate measured in the Cone Calorimeter at a heat flux of 35 kW/m2.
Technical Paper

Using a Sweating Manikin, Controlled by a Human Physiological Model, to Evaluate Liquid Cooling Garments

2005-07-11
2005-01-2971
An Advanced Automotive Manikin (ADAM), is used to evaluate liquid cooling garments (LCG) for advanced space suits for extravehicular applications and launch and entry suits. The manikin is controlled by a finite-element physiological model of the human thermoregulatory system. ADAM's thermal response to a baseline LCG was measured.The local effectiveness of the LCG was determined. These new thermal comfort tools permit detailed, repeatable measurements and evaluation of LCGs. Results can extend to other personal protective clothing including HAZMAT suits, nuclear/biological/ chemical protective suits, fire protection suits, etc.
Technical Paper

Use of a Thermal Manikin to Evaluate Human Thermoregulatory Responses in Transient, Non-Uniform, Thermal Environments

2004-07-19
2004-01-2345
People who wear protective uniforms that inhibit evaporation of sweat can experience reduced productivity and even health risks when their bodies cannot cool themselves. This paper describes a new sweating manikin and a numerical model of the human thermoregulatory system that evaluates the thermal response of an individual to transient, non-uniform thermal environments. The physiological model of the human thermoregulatory system controls a thermal manikin, resulting in surface temperature distributions representative of the human body. For example, surface temperatures of the extremities are cooler than those of the torso and head. The manikin contains batteries, a water reservoir, and wireless communications and controls that enable it to operate as long as 2 hours without external connections. The manikin has 120 separately controlled heating and sweating zones that result in high resolution for surface temperature, heat flux, and sweating control.
Technical Paper

Unrestrained, Front Seat, Child Surrogate Trajectories Produced by Hard Braking

1982-02-01
821165
This paper describes a study to determine the influence of preimpact vehicle braking on the positions and postures of unrestrained, children in the front seat at the time of collision. Anesthetized baboons were used as child surrogates. The unrestrained animals were placed in various initial sitting, kneeling, and standing positions typically assumed by children while traveling in automobiles. Tests were conducted with various front seat positions and seat covering materials. Measurements were made of pertinent vehicle dynamics and surrogate kinematics during the hard braking event. For each initial condition evaluated, a photosequence is given showing typical positions and postures of the surrogate during the braking event.
Technical Paper

Three-Point Belt Induced Injuries: A Comparison Between Laboratory Surrogates and Real World Accident Victims

1975-02-01
751141
Injuries produced by standard three point restraint systems with retractors will be compared between cadavers in laboratory simulated collisions at 30 mph barrier equivalent speed and lap and shoulder belted front seat occupants in real world frontal collisions of '73-'75 full sized cars. Tests conducted at SwRI with belted, unembalmed, fresh cadavers have resulted in extremely severe thoracic and cervical injuries, including multiple rib fractures, fractures of the sternum, clavicle and cervical vertebrae. On the other hand, injury data from a national accident investigation study to evaluate the effectiveness of restraints in late model passenger cars indicates that such injuries in real world crashes of equivalent severity are not always observed. The reasons possible for these differences are discussed. Both programs at SwRI are funded by the National Highway Traffic Safety Administration.
Technical Paper

Thermal Load Reduction System Development in a Hyundai Sonata PHEV

2017-03-28
2017-01-0186
Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning.
Technical Paper

The Use of Radioactive Tracer Technology to Evaluate Engine Wear Under the Influences of Advanced Combustion System Operation and Lubricant Performance

2005-10-24
2005-01-3689
Radioactive tracer technology is an important tool for measuring component wear on a real-time basis and is especially useful in measuring engine wear as it is affected by combustion system operation and lubricant performance. Combustion system operation including the use of early and/or late fuel injection and EGR for emissions control can have a profound effect on aftertreatment contamination and engine reliability due to wear. Liner wear caused by localized fuel impingement can lead to excessive oil consumption and fuel dilution can cause excessive wear of rings and bearings. To facilitate typical wear measurement, the engine's compression rings and connecting rod bearings are initially exposed to thermal neutrons in a nuclear reactor to produce artificial radioisotopes that are separately characteristic of the ring and bearing wear surfaces.
Technical Paper

The Use of Radioactive Tracer Technology in Studying Lubricant Chemistry to Enhance Bearing and Ring Wear Control in an Operating Engine

1994-10-01
941982
Radioactive tracer technology (RAT) is an important tool in measuring component wear in an operating engine on a real-time basis. This paper will discuss the use of RAT to study and evaluate boundary lubricant and surfactant chemistries aimed at providing benefits in wear control. In particular, RAT was employed to study ring and bearing wear as a function of engine operating condition (speed, load, and temperature) and lubricant characteristics. Prior to testing, the engine's compression rings and connecting rod bearings were subjected to bulk thermal neutron bombardment in a nuclear reactor to produce artificial radioisotopes that were separately characteristic of the ring and bearing wear surfaces. The irradiated parts were installed in the test engine, after which testing to a specific test matrix was accomplished.
Technical Paper

The Turbo Trac Traction Drive CVT

2004-08-23
2004-40-0038
A unique and attractive variator mechanism has been developed by Turbo Trac, Inc. and Southwest Research Institute (SwRI) for initial use in a heavy duty diesel truck application. High efficiency levels have been predicted with analytical models and confirmed with actual test data. Further, this variator incorporates a very stable and simple control system and has extremely high torque capacity. The prototype of the variator mechanism has also been configured with a modified Allison 650 series transmission for use as a series application in a Peterbilt truck, the final configuration will be a split power design. The setup includes a preliminary control system that allows for highway driving. It is emphasized, however, that Allison did not contribute to this design or any of the content of this paper.
Technical Paper

The Texas Diesel Fuels Project, Part 1: Development of TxDOT-Specific Test Cycles with Emphasis on a “Route” Technique for Comparing Fuel/Water Emulsions and Conventional Diesel Fuels

2004-03-08
2004-01-0090
The Texas Department of Transportation (TxDOT) began using an emulsified diesel fuel in July 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel, which they use in both their on-road and off-road equipment. The study also incorporated analyses for the fleet operated by the Associated General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel fuel in their equipment. The study included comparisons of fuel economy and emissions for the emulsified fuel relative to the conventional diesel fuels. Cycles that are known to be representative of the typical operations for TxDOT and AGC equipment were required for use in this study. Four test cycles were developed from data logged on equipment during normal service: 1) the TxDOT Telescoping Boom Excavator Cycle, 2) the AGC Wheeled Loader Cycle, 3) the TxDOT Single-Axle Dump Truck Cycle, and 4) the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

The Port Fuel Injector Deposit Test - A Statistical Review

1998-10-19
982713
The Port Fuel Injector (PFI) Deposit Test is a performance-based test procedure developed by the Coordinating Research Council and adopted by state and federal regulatory agencies for fuel qualification in the United States. To date, Southwest Research Institute (SwRI) has performed over 375 PFI tests between 1991 and 1998 for various clients. This paper details the analyses of these tests. Of the 375 tests, 199 were performed as keep-clean tests and 176 were performed as clean-up tests. The following areas of interest are discussed in this paper: Keep-clean versus clean-up test procedures Linearity of deposit formation Injector position effects as related to fouling Dirtyup / cleanup phenomena Seasonal effects This paper draws the conclusion that it is easier to keep new injectors from forming deposits than it is to clean up previously formed deposits. It was found that injector deposit formation is generally non-linear.
Technical Paper

The Development of Techniques to Measure Vehicle Spray on Wet Roads

1974-02-01
740526
Several techniques have been developed to measure the relative amount of splash and spray produced by vehicles when driven on wet roads at highway speeds under controlled conditions. This paper discusses considerations in the development of measurement techniques such as those utilizing photographs, a photometer, densitometer, spraymeter, and spray collector. The development of each technique is described. Some test data utilizing the photometer and densitometer techniques are presented in a comparison of two different trucks run on two different road surfaces with new and worn tires, fully loaded and unloaded, and under light and heavy road moisture conditions.
Technical Paper

The Department of Energy's Hydrogen Safety, Codes, and Standards Program: Status Report on the National Templates1

2006-04-03
2006-01-0325
A key to the success of the national hydrogen and fuel cell codes and standards developments efforts to date was the creation and implementation of national templates through which the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL), and the major standards development organizations (SDOs) and model code organizations coordinate the preparation of critical standards and codes for hydrogen and fuel cell technologies and applications and maintain a coordinated national agenda for hydrogen and fuel cell codes and standards
Technical Paper

The DOE/NREL Environmental Science Program

2001-05-14
2001-01-2069
This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.
Technical Paper

The DOE/NREL Environmental Science & Health Effects Program - An Overview

1999-04-27
1999-01-2249
This paper summarizes current work in the Environmental Science & Health Effects (ES&HE) Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. The goal of the ES&HE Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based and alternative transportation fuels. Each project in the program is designed to address policy-relevant objectives. Studies in the ES&HE Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements, emission inventory development/improvement; and ambient impacts, including health effects.
Technical Paper

The ASTM Test Monitoring Center - Evolving in a Changing Industry

2000-10-16
2000-01-2946
This paper traces the evolution of the ASTM Test Monitoring Center (TMC) from its modest beginnings in 1976 to the present. Formed as an unbiased and non-aligned group within ASTM Subcommittee D02.B, the TMC operates a reference oil based calibration system that serves both the producers and users of automotive lubricants. Governed by the ASTM Test Monitoring Board, the center's primary mission is to calibrate engine dynamometer test stands used to conduct various ASTM test methods for evaluating lubricant performance. The core services of the TMC have remained the same over its nearly 25 year history. The center stores and distributes ASTM reference oils and is responsible for assuring, through the use of analytical testing, the quality and consistency of the oils. The number of reference oils handled by the TMC has steadily increased over time such that today the center inventories some 100 different formulations having a total volume of 65,000 gallons.
Journal Article

Test Protocols for Motorcoach Fire Safety

2015-04-14
2015-01-1381
The Department of Transportation (DOT) National Highway Traffic Safety Administration (NHTSA) awarded a contract to Southwest Research Institute (SwRI) to conduct research and testing in the interest of motorcoach fire safety. The goal of this program was to develop and validate procedures and metrics to evaluate current and future detection, suppression, and exterior fire-hardening technologies that prevent or delay fire penetration into the passenger compartment of a motorcoach - in order to increase passenger evacuation time. The program was initiated with a literature review and characterization of the thermal environment of motorcoach fires and survey of engine compartments, firewalls, and wheel wells of motorcoaches currently in North American service. These characterizations assisted in the development of test methods and identification of the metrics for analysis. Test fixtures were designed and fabricated to simulate a representative engine compartment and wheel well.
Technical Paper

Study of Modern Application Strategies for Catalytic Aftertreatment Demonstrated on a Production V6 Engine

2001-03-05
2001-01-0925
A study was performed to develop optimum design strategies for a production V6 engine to maximize catalyst performance at minimum pressure loss and at minimum cost. Test results for an advanced system, designed to meet future emission limits on a production V6 vehicle, are presented based on FTP testing. The on-line pressure loss and temperature data serves to explain the functioning of the catalyst.
X