Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Study on Machinability Characteristics in Dry Machining of Inconel X-750 Alloy Using Coated Carbide Inserts

2018-07-09
2018-28-0031
Nickel based superalloys have a wide range of applications due to high mechanical strength at high temperatures, fracture toughness and resistance to corrosion. However, because of their outstanding properties, it is considered as the difficult to machine materials. Inconel alloy X-750 is used extensively in rocket-engine thrust chambers. Airframe applications include thrust reversers and hot-air ducting systems along with large pressure vessels are formed from Inconel alloy X-750. Moreover, the comparative analysis of machinability aspect using coated carbide inserts is reported few. The current study explains the machinability investigation on Inconel alloy X-750 superalloys using coated carbides. To collect the experimental data, the L16 experimental design plan is used to experiment with a machining length of 40 mm.
Technical Paper

A Comparative Tribological Performance of Lubricating Oils with Zinc Dialkyl Dithiophosphate and Zinc Oxide Nanoparticles as Additives

2019-10-11
2019-28-0174
The present work compares the tribological properties of ZnO (Zinc Oxide) nanoparticle based lubricant with ZDDP (zinc dialkyl dithiophosphate) based lubricant. The nanolubricant was prepared by mixing the nanoparticles in base oil followed by ultrasonification and ZDDP based lubricant was prepared by mixing ZDDP and stirring with base oil. Base oil used was mineral base oil. Both the lubricants were tested at three different temperatures, loads and roughness values. The test was carried out on AISI 52100 steel samples prepared by wire cutting and were grinded to three different levels of surface roughness. Friction and wear tests were performed using a reciprocating sliding tribo-tester at three different loads and temperatures. Taguchi orthogonal array was used to reduce the number of experiments. SEM, EDS and AFM analysis were carried out to study the surface wear phenomenon.
Technical Paper

A Study on the Turning Characteristics and Optimization of MOS2p and SiCp-Reinforced Al-Si10Mg Metal Matrix Composites

2018-07-09
2018-28-0043
In the fabrication of parts in auto and aero segments, the use of ceramic (SiCp, Al2O3p) reinforces aluminum alloy found to be increased than that of steel and cast iron. This matrix-reinforced alloy has a high strength to weight ratio along with higher modulus and hardness, the lower thermal coefficient of expansion, and improved tribological properties. To this extent, this paper investigates the turning characteristics and optimization study of newly developed metal matrix composites by the addition of both hard ceramic SiCp and soft stable lubricant molybdenum disulfide (MoS2p). The samples such as Sample 1: AlSi10Mg/3SiCp, Sample 2: AlSi10Mg/2MoS2p and Sample 3: AlSi10Mg/3SiCp /2MoS2p are prepared using the automated stir-casting machine. The particles are observed to be uniformly distributed in the composite. After density and hardness measurement, the samples are subjected to machining, and the responses are optimized by using response surface method.
Technical Paper

Braking System for ATV

2020-10-05
2020-01-1611
Design and simulation analysis of braking system for ATV is carried out with the assistance of Ansys and MATLAB. Heat generated increases the temperature of the disc brake at the rubbing surface resulting in thermal stresses in the components of the braking system. Static, structural, thermal, computational flow dynamics, vibrational & fatigue behavior of ventilated brake disc rotor, hub and upright are analyzed. Stainless Steel, SS-410 material configuration has been considered for disc brake rotor and results obtained are analyzed in terms of performance, longevity and efficiency. Braking efficiency and stopping distance curve are analyzed from their characteristics plot. Vibrational behavior, structural behavior, thermal behavior, performance efficiency, flow behavior of ventilated disc brake rotor can be easily depicted with respect to bump and droop during acceleration, high climb and maneuverability. Ventilated disc brake Rotor with outer diameter of 220 mm is used.
Technical Paper

CFD Modeling of Advanced Swirl Technique at Inlet-Runner for Diesel Engine

2015-01-14
2015-26-0095
This paper summarizes the research work incorporated in the exploration of the potential of swirling in CI Engine and designing of a new mechanism, particularly at inlet, to deliver it to improve the in-cylinder air characteristics to eventually improve mixing and combustion process to improve the engine performance. The research is concentrated on the measures to be done on engine geometry so as to not only deliver advantage to any specific fuel. According to the CI combustion theory, better engine performance may be achieved with Higher Viscous Fuel by improving the in-cylinder air-fuel mixing by increasing the swirl (rotation of air view from top of the cylinder) and tumble (rotation of air view from front of the cylinder) of in-cylinder air inside the fuel-injected region. The proposed inlet component is embedded with airfoil and is suitably designed after being iterated from four steps.
Technical Paper

Characterization of AlSi10Mg Alloy Produced by DMLS Process for Automotive Engine Application

2019-10-11
2019-28-0134
Considerable weight of an automobile is constituted by the engine and there is scope for improvement in fuel efficiency and emission control through optimization of weight in the engine. In this work, AlSi10Mg alloy produced by the direct metal laser sintering (DMLS) is suggested for engine application which is a lightweight aluminum alloy. Mechanical properties like tensile strength, compressive strength, and hardness of both cast and DMLS manufactured alloy are compared followed by analysis of SEM images of tensile test fractured surfaces. Reciprocating wear test is carried out for one lakh cycles at 125°C temperature with SAE 40 grade oil as lubricant. Co-efficient of friction (COF), wear rate of the cast and DMLS manufactured samples are compared. Wear patterns are analyzed using SEM images of the wear tracks.
Technical Paper

Corrosion Characteristics on Friction Stir Welding of Dissimilar AA2014/AA6061 Alloy for Automobile Application

2019-10-11
2019-28-0063
Friction Stir Welding (FSW) is a widely used solid state welding process in which its heats metal to the below recrystallization temperature due to frictional force. FSW mostly avoids welding defects like hot cracking and porosity which are mainly occur in conventional welding techniques. In this process the combination of frictional force and the mechanical work provide heating the base metal to get defect free weld joints. Aluminium Alloys 2014 and 6061 are generally used in a wide range of automobile applications like Engine valves and tie rod, shipbuilding, and aerospace due to their high corrosion resistance, lightweight, and good mechanical properties. In the present work, aluminium alloys of AA6061 and AA2014 were effectively welded by friction stir welding technique. The tool rotational speed, travel speed, and tool profile are the important parameters in FSW process. High Speed Steel (HSS) tool with Hexagonal profile is used for this joining.
Technical Paper

Design Improvement of an Automotive Shock Absorber Component Subjected to Fretting Fatigue

2023-11-10
2023-28-0157
A shock absorber endurance test for an automobile that was supposed to resist at least 200,000 load cycles but failed to meet the statutory fatigue limit was under examination. This is due to the breakdown of the assembly that holds the shock absorber shims. This failure occurred due to Fretting fatigue. A design improvement is being introduced to avoid fretting fatigue on the shock absorber shim assembly. FEA is used to investigate the shim assembly in order to locate the stress zone. After adding more shims to the piston, fatigue life was significantly improved. The damping forces were unaffected by the fundamental solution that was applied to make this improvement.
Technical Paper

Design Optimization of an Epoxy Carbon Prepreg Drive Shaft and Design of a Hybrid Aluminium 6061-T6 Alloy/Epoxy Carbon Prepreg Drive Shaft

2018-07-09
2018-28-0014
Epoxy carbon fiber composite materials are known for their light weight and high performance. They can be effective substitutes for commonly used materials for making drive shafts. Fiber orientation angle plays a major role in determining such a drive shaft’s responses. The responses considered in this paper are critical buckling torque, fundamental natural frequency and total deformation. A drive shaft made of epoxy carbon unidirectional prepreg is generated using ANSYS 18.0 ACP Composite Prepost. The objective of this paper is to determine an optimal configuration of fiber orientation angles for four, five and six-layered epoxy carbon drive shaft which tends to increase critical buckling torque and fundamental natural frequency while decreasing the total deformation. The optimal configuration which satisfies this objective for the three responses is identified by Minitab 17 statistical software.
Technical Paper

Design of a Novel Electro-Pneumatic Gear Shift System for a Sequential Gearbox

2019-10-11
2019-28-0011
This paper describes the design of a novel pneumatic gear shifting system to replace the existing gear stick manual shifting system for ease of the driver while shifting gears. The aim of this work is to have a semi-automatic shifting (pneumatic shifting) removing the need for the driver clutch operation. The system consists of a solenoid valve, CO2 gas-pressurized cylinder, double-acting cylinder, and single-acting cylinder. On basis of the signal received the gear needs to be changed, the shifter opens or closes a magnetic valve assembly. The solenoid valve allows the compressed air into the piston that comes from a pressurized cylinder, in order to create the effect of shifting gears. The pedal shifter and buttons are used to shift the gears. The pedal shifter was designed by using a 3-D printing technique using PLA material. The microcontroller used is ATMEGA-328 in this system. There are three switches, one for upshift, downshift, and clutch respectively.
Technical Paper

Effect of Cryogenic Treatment on Inconel 718 Produced by DMLS Technique

2019-10-11
2019-28-0140
The main purpose of this study is to investigate additive manufactured Inconel super alloy subjected to cryogenic treatment (CT). Cryogenic treatment is mainly used in aerospace, defense and automobile application. Direct metal laser sintering is an additive manufacturing technique used for manufacturing of complex and complicated functional components. Inconel is an austenitic chromium nickel based super alloy often used in the applications which require high strength & temperature resistant. In this work, a study is carried out on microstructure and mechanical properties of additive manufactured Inconel 718 when subjected to cryogenic treatment at three different time intervals. The micro-structural evolution of IN718 super-alloy before and after CT was investigated by both optic microscope and scanning electron microscope. Surface roughness and hardness at different CT time intervals has also analyzed. Additionally, XRD technique was used to analyze the surface residual stress.
Technical Paper

Experimental Analysis of Surface Morphology of Commercial Fuel Filter with Oxygenated Fuels

2017-07-10
2017-28-1957
Oxygenated fuels like biodiesel and ethanol possess prominent characteristics as an alternative fuel for diesel engines. However, these fuels are corrosive in nature and hygroscopic. This might results in material incompatibility with the fuel supply system of an automobile. The filter consists of a filter membrane that that traps the contaminants from the fuel and prevents them from entering into the combustion chamber. The operational hours of the filter membrane depend on the quality of fuel employed. The conventional filter is designed for fossil diesel operation and hence the filter life might degrade earlier in the case of oxygenated fuels like biodiesel or ethanol. The proposed work focuses on the impact of oxygenated fuels, viz. karanja and ethanol blended karanja biodiesel on the filter membrane and its flow characteristics. Two tests, pressure difference and contaminant retention test are carried out in accordance with Japanese standard D1617:1998.
Technical Paper

Experimental Investigation on Turning Characteristics of TiC/MoS2 Nanoparticles Reinforced Al7075 Using TiN Coated Cutting Tool

2019-10-11
2019-28-0165
In recent years, aluminum metal matrix composites (Al-MMC) are found as a potential material for numerous applications owing to its excellent tribological and mechanical properties. In this work, the machining characteristics of aluminum alloy (Al7075) reinforced with TiC/MoS2 having nanoparticle has been studied. The samples of aluminum metal matrix composites by varying TiC in 0, 2 and 4 and MoS2 in 0 and 2 of the percentage weight of aluminum alloy (Composite 1(Al7075), Composite 2 (Al7075/2TiC/2MoS2) and composite 3 (Al7075/4TiC/2MoS2), respectively) are fabricated by the stir-casing method. The turning characteristics of the developed metal matrix composites are studied at various parameters such as cutting velocity (30 m/min, 60 m/min and 90 m/min), cutting depth (0.5 mm, 1.0 mm and 1.5 mm) and composites (1, 2 and 3) using TiN coated cutting tool by dry turning at 0.05 mm/rev feed rate.
Technical Paper

Experimental Investigations on Lean Burn Spark Ignition Engine Using Methanol - Gasoline Blends

2019-01-09
2019-26-0088
The present study discusses the effects of engine combustion, performance and emission features of methanol-gasoline blend fired lean burn Spark Ignition (SI) engine. Performance features such as Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), tail pipe emissions namely Hydrocarbon (HC), Carbon Monoxide (CO), Nitrogen Oxide (NO), Carbon di Oxide (CO2) and combustion characteristics viz. in-cylinder pressure, Heat Release Rate (HRR), Cumulative Heat Release (CHR) and variation of mean effective pressure were measured and compared with that of neat gasoline. Experiments were conducted on a modified sole cylinder four-stroke compression engine (Kirloskar TAF1) to operate as SI engine with a compression ratio of 10.5:1. A new manifold injection system and ignition system were developed by replacing the fuel injection pump and injector.
Technical Paper

Experimental Investigations on the Effect of Alcohol Addition on Performance, Emission and Combustion Characteristics of LPG Fuelled Lean Burn Spark Ignition Engine

2019-01-09
2019-26-0085
Rising energy demands, ecological deterioration and diminution of fossil fuels has necessitated the researchers to search for alternatives. With alternate fuels like Liquefied Petroleum Gas (LPG), hydrogen and alcohol based fuels, it is easier to substitute with the present engine without many alterations. Excellent chemical properties of these fuels make them favorable for lean burn operation which makes it a cost effective option to achieve goals of better fuel economy and controlled emissions. In this regard, experimental studies were carried out to examine the effects of LPG with different proportions of alcohols like ethanol and methanol (5, 10 and 20%) on the performance, emission and combustion characteristics of a single cylinder SI engine operated at a constant speed of 1500 rpm with a optimized compression ratio of 10.5:1 under full throttle opening conditions at varying equivalence ratio.
Technical Paper

Experimental Study on Tool Wear and Cutting Temperature during Machining of Nimonic C-263 and Waspaloy Based on Taguchi Method and Response Surface Methodology

2019-10-11
2019-28-0144
Nickel based materials of Nimonic C-263 and Waspaloy are used nowadays for aerospace applications owing to its superior strength properties that are maintained at a higher temperature. Tool wear and cutting temperature in the vicinity of cutting edge are two essential machinability characteristics for any cutting tool. In this regard, this study is pursued to examine the influence of factors on measuring of tool wear (Vba) and cutting temperature (Ts) during dry machining of two alloys studied experimentally based on Taguchi method and response surface methodology. Taguchi’s L16 orthogonal array is used to design the experiment and a PVD (TiAlN), CVD (TiN/Al2O3/TiCN) coated carbide inserts are used on turning of two alloys. The factor effect on output responses are studied using analysis of variance, empirical models, and responses surface 3D plots. To minimize the response and to convert into one single optimum level, responses surface desirability function approach is applied.
Technical Paper

Fabrication and Machinability Study of Al2219 Metal Matrix Composites Reinforced with SiN/MoS2 Nanoparticles

2019-10-11
2019-28-0170
Composites materials are substituting constituents for traditional materials due to their remarkable properties, and the addition of nanoparticles gives a new development in the material domain. The nanoparticles influence on fabrication and machinability investigation study is essential as the composites to be used in applications like automotive and aerospace. The current study investigates the machinability characteristics of Al2219 based metal composites reinforced with nanoparticles of SiN/MoS2. Al2219- reinforcements (SiN and MoS2) composites are fabricated by the method of stir casting. Four different compositions (Al2219/SiN (2 wt% and 4 wt%), , Al2219/2 wt.% SiN/ 2 wt.% MoS2, Al2219/2 wt.% MoS2) are fabricated by varying the different weight percentages of nanoparticles reinforcements. An attempt is made to study the investigation analysis of force, surface roughness, and tool wear using CNC machine lathe to consider the effect of cutting speed, cutting depth, and samples.
Technical Paper

Implementation of Reconfigurable Manufacturing Systems in the Manufacturing of Turbo Charger Turbine Housing

2019-10-11
2019-28-0135
Today manufacturing industries have become more competitive and to survive, industries should be capable of accommodating the sudden market change. The conventional manufacturing systems like Dedicated Manufacturing Lines (DMLs) can produce high volume of product but difficult to cater to varying product types. On the other hand, Flexible Manufacturing System (FMS) is capable of handling product variety but not suited for mass production, The Reconfigurable Manufacturing System (RMS) gives the advantage of both the system, as it has the capability to adjust to both high volume requirement and product variety, and it able to upgrade to new process technology with minimal effort. In this work the reconfiguration is carried out in machine and system level. At machine level, a new inspection machine is proposed which can be used for multiple products with minimal adjustments and a special drilling and bore tool is suggested to reduce the cycle time and ramp up time when product changes.
Technical Paper

Influence of Various Parameters of Turning Low Carbon Steel with M2 HSS Tool Using Minimum Quantity Lubrication

2022-12-23
2022-28-0533
Turning is a widely used manufacturing process in mechanical machining industries, while the cost associated with this process is high due to the cost involved in changing tools or tool regrinding. All the parameters of turning, like feed rate, cutting speed, and depth of cut, substantially impact the tool wear, which subsequently reduces tool life. Cooling methods like flooding, Minimum Quantity Lubrication (MQL), etc., are incorporated to minimise these effects on the tool and workpiece interface. When using these cooling techniques, the process parameters involved play vital roles in increasing the effectiveness. This paper focuses on the effects of machining parameters on the tool and the workpiece quality. Experiments were conducted to study the impact of various input parameters of the turning process on the tool tip temperature, cutting forces, and tool wear, ultimately affecting the tool's life.
Technical Paper

Investigation of Machinability Characteristics and Chip Morphology on Inconel 718: Dry and MQL

2019-10-11
2019-28-0066
Inconel 718 has excellent material properties, corrosion, and oxidation property among the nickel based superalloy. This property makes it suitable for producing components operating under extreme environments subjected to pressure and heat. The present study aims to examine the machinability comparison under dry and MQL turning of Inconel 718. The secondary aim is to report the sustainable machining on Inconel 718. Dry and MQL (Minimum Quantity Lubrication) experiments are carried out on Inconel 718 alloy based on Taguchi’s designed L16 orthogonal array. The cutting tools are an advanced coated cutting tool and uncoated tool. The levels of turning parameters are varied at 70, 120, 170 and 220 m/min of turning speed, 0.1, 0.15, 0.2 and 0.25 mm/rev of feed rate and 0.3, 0.4, 0.5 and 0.6 mm of cutting depth. The cutting forces, surface roughness, flank wear, and chip morphology are taken for the current investigation. The factor effect on output responses is studied using 2D plots.
X