# Comparison of Oil Retention in R134a and CO<sub>2</sub> Climate Control Systems

Lorenzo Cremaschi

Yunho Hwang, Ph.D.

Reinhard Radermacher, Ph.D.

**CEEE University of Maryland** 





### **Objective:**

- Introduction
- Research Overview
- Experimental Results
- Comparison Oil Retention Characteristics
- Conclusions



### **Experimental Test Facility for R134a**





### **Experimental Test Facility for CO<sub>2</sub>**





### **Experimental Conditions**

Refrigerants: R134A, R22, R410A, CO<sub>2</sub> (Lee, 2003)

Lubricants: Mineral, POE and PAG Oil

Refrigerant mass flow rate:

- 14 to 45 g/s (steady state)
- Oil Circulation Ratio (OCR): 1 to 6 wt.%

$$OCR[wt.\%] = \frac{m_{oil}}{m_{oil} + m_{ref}} \times 100$$



### Oil Injection-Extraction Device







•OCR < 0.5 wt.%

•Test Code: 1LS (without any injection)

•OCR =  $0.5 \rightarrow 6.5$  wt.%

•Test Code: 1LS transitory

### R134a/POE Horizontal Suction line Flow Visualization



•Test Code: 1LS with oil injection













## **Cumulative Oil Retention for R134a/POE**





## Cumulative Oil Retention for R134a/POE and R134a/PAG

Ref. Mass Flow rate = 45 g/s





### Oil Distribution for R134a/POE





## Oil Distribution for CO2/PAG (Lee, 2003)



\*most of the <u>oil is retained</u> in the <u>headers</u> of the microchannel heat exchanger



## Outlet Header Microchannel Evaporator CO2/PAG (Lee, 2003)





## Effect of Change of Mixture Viscosity on Oil Retention Volume

R410A/MO (vrf=1.55)
 R410A/POE (vrf=1.17)
 R22/MO (vrf=1)
 X R134a/PAG (vrf=0.82)
 R134a/POE (vrf=0.79)

#### Kinetic Viscosity Ratio

$$\widetilde{v} = \frac{v_{\textit{liquid,film}}}{v_{\textit{ref,vapor}}}$$

### Viscosity Ratio Factor (vrf)

$$\operatorname{vrf} = \frac{\widetilde{v}_{oil-ref}}{\widetilde{v}_{MO-R22}}$$

 $\begin{array}{l} Re_{vapor} \cong 24 \ x \ 10^4 \\ m_{flux} \quad \cong 160 \ kg/m^2 s \end{array}$ 





### Oil Retention Data Comparison

- For R134a/POE systems, if the OCR increases from 0 to 5 wt.% the oil retention increases
  - Up to 13 ml/m in the suction line
  - Up to 2.1 ml/m in the evaporator
  - Up to 1.4 ml/ m in the liquid line

The Reynolds number in the suction line varied between  $17,000 < Re_g < 26,000$  for R134a systems

- CO<sub>2</sub>/PAG systems have lower oil retention in the microchannel since the increased mass flux promotes the oil transport. However, the oil is retained in the headers (←oil traps).
- For CO<sub>2</sub>/PAG mixture the maximum oil retention in the suction line was 10 ml/m and the Reynolds number ranged from 12,000 < Re<sub>g</sub>
   35,000 during the experiments



## Schematic Map for Oil Transport in the Suction Line of Air Conditioning Systems





## **Characteristic Parameters for Oil Retention**





## Dimensionless Numbers for Oil Retention

Refrigerant Reynolds Number: 
$$Re_g = \frac{\rho_g v_g D}{\mu_g} = \frac{G_g \cdot D}{\mu_g}$$

Oil Circulation Ratio: 
$$OCR = \frac{n_{out}}{n_{out} + n_{reg}}$$

Mixture Viscosity Ratio: 
$$\widetilde{v} = \frac{v_{liquid,film}}{v_{ref,vapor}}$$

Mixture Weber Number: 
$$We_m = \frac{G_m^2 D}{\rho_m \cdot \sigma_m}$$



## Oil Retention in the Fin and Tube Evaporator for R134a/PAG

## Fin-and Tube **Evaporator**

MFRref = 45 g/s OCR = 2.4 wt.% Pin = 0.465 MPa Xin = 0.06 No. of Seg. = 224





## R134a Pressure Drop Penalty Factor in the Evaporator and Suction Line





## **CO<sub>2</sub> and R134a Pressure Drop Penalty Factor in the Condenser/Gas Cooler**





### Conclusion

- Oil Retention (OR) increases when:
  - OCR ↑ (OCR = main independent variable!)
  - Liquid Film Viscosity ↑
  - Refrigerant Mass flux G ↓
- The oil retention volume ratio for R134a system is slightly less than that of CO<sub>2</sub> system, especially at low OCRs.
- R134a/POE and R134a/PAG mixtures have similar oil retention characteristics
- A very soluble refrigerant-oil mixture (such as R134a/PAG) promotes the oil transport even thought the viscosity of the pure oil is considerable.



### **Conclusion (cont)**

- CO<sub>2</sub>/PAG Systems using micro channel HX suffered of
  - High oil retention in the evaporator and gas cooler
  - High Pressure drop penalty factor due to the oil retained
- When the OCR increased from 0 to 5 wt.% then the PDPF increases of about
  - 30% for R134a and 20% for CO<sub>2</sub> in the suction Line
  - 20% in the evaporator (R134a)
    - more than double that in CO<sub>2</sub> evaporator (microchannel HX)
  - 50% in the condenser (R134a)
    - 2.5 times in the gascooler (CO<sub>2</sub> microchannel HX)

