Refine Your Search

Topic

Author

Search Results

Technical Paper

Integrated Vehicle Electronics - An Overview of Its Potential

1986-10-20
861031
New methods are required for implementing the proliferation and sophistication of electronic controls and features to meet the customer's quality expectations. Vehicle electronic integration provides a potential solution for reconciling the seemingly contradictory objectives of high quality at reasonable cost. No module can be considered independently with this global approach. OEM subsystem and component suppliers' devices will need to play in concert with the overall vehicle's electrical/electronic strategy. Some new, separately packaged electronic features may eventually be assimilated within the framework of other electronic controllers.
Technical Paper

Reliability Estimation and Failure Prediction of Vehicle Systems and Components

1990-09-01
901740
For designing new products or developing new specifications, the reliability performance of systems and components experienced by the customer provides invaluable information for the engineer. This information, not only provides for the visibility of reliability requirements, but also an awareness of potential degradation of the systems and components during its life cycle. In this paper, a method is presented for predicting vehicle system and component reliability from vehicle fleet repair data. This method combines sampling stratification, computer data analysis and statistical modeling techniques into a reliability analysis procedure to provide reliability prediction. Specifically, published vehicle fleet data was used to provide the basis for predicting the vehicle system and component reliability at any mileage level.
Technical Paper

Fundamental Studies of Polyurethane Foam for Energy Absorption in Automotive Interiors

1991-02-01
910404
This paper describes and characterizes energy-absorbing polyurethane foam as exemplified foam made with Bayfill EA systems. This paper emphasizes its use for automotive passive restraint systems. Static and dynamic properties will be presented. In addition the effect of velocity, weight, density, and vehicle environment on energy absorption will be discussed. RECENT federal requirements for the safety of occupants in automobiles has prompted the industry to investigate light weight and low cost materials for energy management. The use of passive restraints in interiors, i.e. air-bags, has necessitated the development of energy-absorbing instrument panels (IP) for passenger cars and multi-purpose vehicles. When air-bags are deployed in a collision the passenger tends to slide under the bag impacting the knee into the instrument panel. Foam as an energy absorbing material has played an important role in the development of knee bolsters for these interiors.
Technical Paper

Evaluation of Automotive Front Seat Structure Constructed of Polymer Composite

1992-02-01
920335
Seats play an important role in determining customer satisfaction and safety. They also represent three to five percent of the overall vehicle cost and weight. Therefore, automotive manufacturers are continuously seeking ways to improve the areas of comfort, safety, reliability, cost and weight within the seat system. The purpose of this paper is to review the development of an automotive front seat constructed of injection molded nylon frames and metal mechanisms. This development program was initiated for the purpose of reducing vehicle weight while increasing the reliability and safety of the front seats. This paper will review the material and process selection decision, a design overview, the performance criteria and the results of tests performed on the injection molded front seats.
Technical Paper

Inadvertent Air Bag Sensor Testing for Off-Road Vehicles

1993-11-01
933020
This paper presents the development of a test procedure for evaluation of inadvertent deployment of air bags. The methodology and early development of the procedure is discussed along with additional criteria thought to be required for trucks and sport utility vehicles. Tests conducted address severe off-road use in relation to air bag sensing systems. Data is collected from accelerometers. After worst case test conditions are identified (examples include rough road, snow plowing and jerk towing events), the data is analyzed and comparisons for design decisions can be made.
Technical Paper

The Behavior of Multiphase Fuel-Flow in the Intake Port

1994-03-01
940445
Most of the current fuel supply specifications, including the key parameters in the transient fuel control strategies, are experimentally determined since the complexity of multiphase fuel flow behavior inside the intake manifold is still not quantitatively understood. Optimizing these specifications, especially the parameters in transient fueling systems, is a key issue in improving fuel efficiency and reducing exhaust emissions. In this paper, a model of fuel spray, wall-film flow and wall-film vaporization has been developed to gain a better understanding of the multiphase fuel-flow behavior within the intake manifold which may help to determine the fuel supply specifications in a multi-point injection system.
Technical Paper

Development of a Rubber-Like Headform Skin Model for Predicting the Head Injury Criterion (HIC)

1995-02-01
950883
This paper describes the development of a rubber-like skin Finite Elements Model (FEM) for the Hybrid III headform and an experimental method to determine its material properties. The finite element modeling procedures, using material parameters derived from tests conducted on the headform skin (rubber) material, are described. Dynamic responses and computations of HIC using the developed headform model show that an Elastic-Plastic Hydrodynamic (EPH) material model of the rubber can be used for headform impact simulations. The results obtained from the headform simulation using an EPH rubber material model and drop tower tests of the headform on both a rigid and a deformable structure will be compared, in order to show the applicability of the EPH model.
Technical Paper

Analysis of the Pelvis-Chest Interactions in Hybrid III

1995-02-01
950663
The interaction ILLEGIBLEf the chest of the Hybrid III dummy with the air bag restrILLEGIBLEt system during a crash is complex. Forces applied to one ILLEGIBLEmponent of the dummy can generate an unexpected response in a distal part. Motion, both linear and angular, of the pelvis during impact can create an enigmatic spike in the acceleration of the chest. Because significant changes in the chest acceleration response can affect the development of an airbag system, this pelvis-chest interaction is cause for concern. The factors that appear to affect the chest acceleration spike as a result of the pelvis-chest interaction are: the mass moment of inertia of the pelvis, the interaction of the pelvis with the femur, the characteristic of the lumbar spine, and the differential velocity of the pelvis with respect to the chest.
Technical Paper

Extending the Enterprise: The Supplier Role in Product Stewardship

1995-12-01
952785
The bounds of Early Supplier Involvement (ESI) are extended through an integrated global raw material strategy which encompasses regulated substance control, material selection and rationalization, and design for recyclability/separability. A life cycle management (LCM) model is used to evaluate environmental, health, safety and recycling (EHS&R) issues in a systematic business decision framework.
Technical Paper

Hydrogen Embrittlement in Automotive Fastener Applications

1996-02-01
960312
Fastener failure due to hydrogen embrittlement is of significant concern in the automotive industry. These types of failures occur unexpectedly. They may be very costly to the automotive company and fastener supplier, not only monetarily, but also in terms of customer satisfaction and safety. This paper is an overview of a program which one automotive company initiated to minimize hydrogen embrittlement in fasteners. The objectives of the program were two-fold. One was to obtain a better understanding of the hydrogen embrittlement phenomena as it relates to automotive fastener materials and processes. The second and most important objective, was to eliminate hydrogen embrittlement failures in vehicles. Early program efforts concentrated on a review of fastener applications and corrosion protection systems to optimize coated fasteners for hydrogen embrittlement resistance.
Technical Paper

Environment, Health and Safety: A Decision Model for Product Development

1996-02-01
960407
Environmental issues continue to emerge as a significant concern of the public today. End-of-pipe controls have proven to be costly solutions and have not addressed the root causes of environmental issues. Pollution prevention programs better address concerns and produce more cost-effective solutions. Additionally, regulations can no longer be addressed in isolation. Industry must view regulatory requirements as other business matters are addressed. The integration of regulatory requirements into the business plan focuses the cost of compliance on appropriate products or processes and exposes formerly hidden costs. For highly outsourced OEM's, supplier participation is critical to the success of any program. The bounds of Early Supplier Involvement (ESI) are extended through an integrated global raw material strategy that encompasses regulated substance control, material selection and rationalization, and design for recyclability/separability.
Technical Paper

Fuel Mixture Temperature Variations in the Intake Port

1996-05-01
961194
Temperature variation and heat transfer phenomena in the intake port of a spark ignition engine with port injection play a significant role in the mixture preparation process, especially during the warm up period. Cold temperatures in the intake port result in a large amount of liquid-fuel film. Since the liquid-fuel film responds at a slower speed than the gas-phase flow during transient operations, the liquid-fuel film acts as a fuel sink (or source) and can degrade the vehicle's driveability, fuel economy, and emissions control. In this work, a one-dimensional, unsteady, multicomponent, multiphase flow model has been developed to study the mixture formation process in the intake port for a modern, multipoint-fuel-injection, gasoline engine. The droplet, liquid film and gas-phase mixture temperature variations and the effects of charge air, initial fuel and port wall temperatures involved in generating the air-fuel mixture are examined.
Technical Paper

Using Life Cycle Management to Evaluate Lead-Free Electrocoat‡

1997-02-24
970696
Environmental costs are a delayed financial burden that result from product decisions made early in the product life cycle--early material choices may create regulatory and waste management costs that were not factored into the acquisition cost. This paper outlines a step-wise approach to determine decision points; environmental, health, safety and recycling (EHS&R) cost drivers that affect decisions; and sources of information required to conduct a Life Cycle Management (LCM) review. Additionally, how LCM fits into the larger concurrent engineering framework is illustrated with an electrocoat primer example. Upstream and downstream supply chain processes are reviewed, as well as organizational challenges that affect the decision process.
Technical Paper

Static and Dynamic Dent Resistance Performance of Automotive Steel Body Panels

1997-02-24
970158
In recent years, strict weight reduction targets have pushed auto manufacturers to use lighter gauge sheet steels in all areas of the vehicle including exterior body panels. As sheet metal thicknesses are reduced, dentability of body panels becomes of increasing concern. Thus, the goal becomes one of reducing sheet metal thickness while maintaining acceptable dent resistance. Most prior work in this area has focused on quasi-static loading conditions. In this study, both quasi-static and dynamic dent tests are evaluated. Fully assembled doors made from mild, medium strength bake hardenable and non-bake hardenable steels are examined. The quasi-static dent test is run at a test speed of 0.1 m/minute while the dynamic dent test is run at a test speed of 26.8 m/minute. Dynamic dent testing is of interest because it more closely approximates real life denting conditions such as in-plant handling and transit damage, and parking lot damage from car door and shopping cart impact.
Technical Paper

Comparison of Energy Management Materials for Head Impact Protection

1997-02-24
970159
Energy management materials are widely used in automotive interiors in instrument panel, knee bolster, and door absorber applications to reduce the risk of injury to an occupant during a crash. Automobile manufacturers must meet standards set by the National Highway Traffic Safety Administration (NHTSA) that identify maximum levels of injury to an occupant. The recent NHTSA upgrade to the Federal Motor Vehicle Safety Standard (FMVSS) 201 test procedure(1) for upper interior head impact protection has prompted energy management materials' use in several new areas of affected vehicles. While vehicle evaluations continue, results to date show that energy management foams can be effective in reducing the head injury criterion [HIC(d)] to acceptable government and OEM levels.
Technical Paper

Digital Recording of Vehicle Crash Data

1981-06-01
810810
This paper discusses the development and implementation of a 16 channel data acquisition system for high “G” impact testing which includes a self-contained, on-board data acquisition unit, a programmer-exerciser and debriefing subsystems. The microprocessor controlled, on-board unit contains all signal conditioning, A/D conversion hardware and logic to store 4K 12 bit samples of data per channel. This unit will debrief into an oscilloscope, a desk-top computer or a large disk-based minicomputer system. Advantages over previous systems include the elimination of costly hardware (such as umbilical cables and recorders), and a reduction in pre-test preparation and data processing time.
Technical Paper

A Progress Report on Electromagnetic Activity of Motor Vehicle Manufacturer's Association

1973-02-01
730057
Starting in 1965 and continuing through 1972, the Radio Committee of the Motor Vehicles Manufacturers Association (MVMA) has been the coordinator of a number of electromagnetic research projects. These investigations have included extensive applications of the updated SAE Standard, Measurement of Electromagnetic Radiation From Motor Vehicles (20-1000 MHz)-SAE J551a. Furthermore, there were joint testing programs with the Electronic Industries Association which encompassed measuring degradation in the performance of Land Mobile Radio Service receivers resulting from varying levels of impulsive-type radiation from motor vehicles. In addition, efforts were expended in using statistical approaches for testing a number of hypotheses covering a conversion of impulsive vehicle noise data to the interference potential to Land Mobile receivers.
Technical Paper

A Procedure for Measuring Instrument Panel Visibility

1972-02-01
720232
A procedure has been developed for measuring the relative visibility of automotive instrument panel graphics and components. Through use of a Luckiesh-Moss Visibility Meter, discreet values of visibility can be assigned to visual targets and related to driver reaction time. Also, eyes off the road lapsed time boundaries may be established which will define visibility requirements necessary to serve the total driver population. These requirements can be translated into meaningful guidelines or standards for visibility attributes such as size, shape, color, contrast, and position of graphics, controls, and indicators. How visibility measurements are made and interpreted and the visibility measuring facility are discussed in this paper.
Technical Paper

TFC/IW

1978-02-01
780937
TFC/IW, total fuel consumption divided by inertia (test) weight is a useful concept in analyzing the total or composite fuel economy generated in thousands of tests using the carbon balance technique in EPA Federal Test Procedure and Highway Driving Cycle. TFC/IW is a measure of drive train efficiency that requires no additional complicating assumptions. It is applicable to one test or a fleet representing many tests.
Technical Paper

The 1978 Chrysler Torque Converter Lock-Up Clutch

1978-02-01
780100
A torque converter lock-up clutch was introduced by Chrysler Corporation in a majority of its passenger cars in the 1978 model year. The lock-up clutch improves fuel economy by eliminating torque converter slip in direct gear above a predetermined speed. The clutch and its controls were designed to fit within the confines of the existing transmission. The development of the clutch was primarily concerned with achieving adequate endurance life, good shift quality and isolation of torsional vibrations.
X