Refine Your Search

Topic

Search Results

Technical Paper

Study on Hydrodynamic Characteristics of Fuel Droplet Impact on Oil Film

2020-04-14
2020-01-1429
In order to understand the spray impinging the lubricant oil on the piston or cylinder wall in GDI engine, the Laser Induced Fluorescence (LIF) method was used to observe the phenomenon of the fuel droplets impact oil film and distinguish the fuel and oil during the impingement. The experimental results show that the hydrodynamic characteristics of impingement affected by the oil viscosity, droplets’ Weber number, oil film thickness. Crown formed after impingement. The morphology after impingement was categorized into: rings, stable crown, splash and prompt splash. Low oil film dynamic viscosity, high Weber number or thin oil film can facilitate splash. Splash droplets consist of fuel and oil, and the oil is the main component of splash droplets and crown. The empirical formula of critical We number (We) is fitted. High dimensionless oil film thickness or low oil film dynamic viscosity can increase the proportion of fuel in the crown.
Journal Article

Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing

2017-03-28
2017-01-0754
The dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion could achieve high efficiency and low emissions over a wide range of operating conditions. However, further high load extension is limited by the excessive pressure rise rate and soot emission. Polyoxymethylene dimethyl ethers (PODE), a novel diesel alternative fuel, has the capability to achieve stoichiometric smoke-free RCCI combustion due to its high oxygen content and unique molecule structure. In this study, experimental investigations on high load extension of gasoline/PODE RCCI operation were conducted using late intake valve closing (LIVC) strategy and intake boosting in a single-cylinder, heavy-duty diesel engine. The experimental results show that the upper load can be effectively extended through boosting and LIVC with gasoline/PODE stoichiometric operation.
Technical Paper

Effect of Supercharging on the Intake Flow Characteristics of a Swirl-Supported Engine

2020-04-14
2020-01-0794
Although supercharged system has been widely employed in downsized engines, the effect of supercharging on the intake flow characteristics remains inadequately understood. Therefore, it is worthwhile to investigate intake flow characteristics under high intake pressure. In this study, the supercharged intake flow is studied by experiment using steady flow test bench with supercharged system and transient flow simulation. For the steady flow condition, gas compressibility effect is found to significantly affect the flow coefficient (Cf), as Cf decreases with increasing intake pressure drop, if the compressibility effect is neglected in calculation by the typical evaluation method; while Cf has no significant change if the compressibility effect is included. Compared with the two methods, the deviation of the theoretical intake velocity and the density of the intake flow is the reason for Cf calculation error.
Technical Paper

Study on the Characteristics of Different Intake Port Structures in Scavenging and Combustion Processes on a Two-Stroke Poppet Valve Diesel Engine

2020-04-14
2020-01-0486
Two-stroke engines have to face the problems of insufficient charge for short intake time and the loss of intake air caused by long valve overlap. In order to promote the power of a two-stroke poppet valve diesel engine, measures are taken to help optimize intake port structure. In this work, the scavenging and combustion processes of three common types of intake ports including horizontal intake port (HIP), combined swirl intake port (CSIP) and reversed tumble intake port (RTIP) were studied and their characteristics are summarized based on three-dimensional simulation. Results show that the RTIP has better performance in scavenging process for larger intake air trapped in the cylinder. Its scavenging efficiency reaches 84.7%, which is 1.7% higher than the HIP and the trapping ratio of the RTIP reaches 72.3% due to less short-circuiting loss, 11.2% higher than the HIP.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

A Solution to Fuel Vaporization Problem in a Power Nozzle

2009-04-20
2009-01-1051
A power nozzle is a fuel injection actuator in which fuel is instantly compressed and then discharged by a solenoid piston pump with nozzle. Fuel vaporization inside the power nozzles is a challenging issue. This paper presents an effective solution to the fuel vaporization problem in the power nozzle. An applied physical process, fluid boundary layer pumping (FBLP), is found in this study. FBLP can result in fuel circulation within the fuel line of the power nozzle, which on one hand brings heat out of the power nozzle, and on the other hand blocks vapor from entering the piston pump.
Technical Paper

Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine

2017-03-28
2017-01-0576
Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
Technical Paper

An Investigation of Abnormal Spray Behaviors of Multi-Hole GDI Injector

2016-04-05
2016-01-0848
The main objective of this paper is to investigate the influence of injection pressures and fuel temperatures on the secondary injection spray evolution at the end of injection from a multi-hole gasoline direct injection (GDI) injector by Mie-scattering technique. The results of this paper show that the overall injection process can be classified into five stages which are injection delay stage, main injection stage, dwell stage, secondary injection stage and ligaments breakup stage respectively. Especially, the secondary injection occurs at the end of main injection, which is abnormal and undesirable spray behaviors. During the injection, big droplets and ligaments are injected through nozzle orifices at low speed. As the injection pressure increases, the phase of the secondary injection advances, and the injection duration decreases. At medium injection pressures (at 6, 8 MPa), more quantity of fuel are injected as ligaments.
Technical Paper

Numerical Investigation of the Intake Flow of a Four-Valve Diesel Engine

2017-10-08
2017-01-2211
The intake process plays an important role in the operation of internal combustion engines. In the present study, a three-dimensional transient simulation of a four-valve diesel engine was performed using Large Eddy Simulation (LES) model based on software CONVERGE. The mean velocity components in three directions through the intake valve curtain, the flow separation around the intake valves, the influences of inlet jet on turbulence flow field and cycle-to-cycle variation were investigated in this work. The result shows that the mean velocity distributes non-uniformly near the valve curtain at high valve lifts. In contrast, the mean velocity distribution is uniform at low valve lifts. It is found that the flow separation occurs at valve stem, valve seat and valve sealing through the outlet of the helical port. In contrast, flow separation is only observed in the valve seat through the outlet of the tangential port.
Technical Paper

Study on Dynamic Characteristics of High-Speed Solenoid Injectors by Means of Contactless Measurement

2017-10-08
2017-01-2313
In-cylinder direct-injected technology provides a flexible and accurate optimization for internal combustion engines to reduce emission and improve fuel efficiency. With increasingly stringent requirements for the emissions of nitrogen oxides (NOx) and CO2, the content of injections in an engine combustion cycle has reached 7 to 9 times in gasoline direct injection (GDI) and the diesel engine with high-pressure common rail (HPCR). Accurate control of both time and quantity of injection is critical for engine performance and emissions, while the dynamic response of injector spray characteristics is a key factor. In this paper, a test bench was built for monitoring the dynamic response of solenoid injectors with high-speed micro-photography and synchronous current collection system. Experimental studies on the dynamic response of GDI and HPCR solenoid injectors were carried out.
Technical Paper

Surface Functional Groups and Graphitization Degree of Soot in the Sooting History of Methane Premixed Flame

2017-03-28
2017-01-1003
The evolution of surface functional groups (SFGs) and the graphitization degree of soot generated in premixed methane flames are studied and the correlation between them is discussed. Test soot samples were obtained from an optimized thermophoretic sampling system and probe sampling system. The SFGs of soot were determined by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) after removing the soluble impurities from the soot samples, while the graphitization degree of soot was characterized by Raman spectrum and electron energy loss spectroscopy (EELS). The results reveal that the number of aliphatic C-H groups and C=O groups shows an initial increase and then decrease in the sooting history. The large amount of aliphatic C-H groups and small amount of aromatic C-H groups in the early stage of the soot mass growth process indicate that aliphatic C-H groups make a major contribution to the early stage of soot mass growth.
Technical Paper

Effects of Late Intake Valve Closing Timing on Thermal Efficiency and Emissions Based on a Two-stage Turbocharger Diesel Engine

2013-04-08
2013-01-0276
This paper investigated the effects of late intake valve closing timing (IVCT) and two-stage turbocharger systems matching based on partially premixed combustion strategy. Tests were performed on a 12-liter L6 heavy-duty engine at loads up to 10 bar BMEP at various speed. IVCT (where IVCT is -80°ATDC, -65°ATDC and -55°ATDC at 1300 rpm, 1600 rpm and 1900 rpm, respectively) lowered the intake and exhaust difference pressure, reducing pumping loss and improved the effective thermal efficiency by 1%, 1.5% and 2% at BMEP of 5 bar at 1300 rpm, 1600 rpm and 1900 rpm. For certain injection timings and EGR rate, it is found that a significant reduction in soot (above 30%) and NOx (above 70%) emissions by means of IVCT. This is due to that IVCT lowered effective compression ratio and temperature during the compression stroke, resulting in a longer ignition delay as the fuel mixed more homogeneous with the charge air ahead of ignition.
Technical Paper

Effects of Combination and Orientation of Intake Ports on Swirl Motion in Four-Valve DI Diesel Engines

2000-06-19
2000-01-1823
Two identical helical ports and two identical directed ports were arranged into four different kinds of port combinations: helical and helical, helical and directed, directed and directed, directed and helical. Each port can rotate freely around its valve axis. The swirl ratio and the flow coefficient for each combination of intake ports were tested on a steady flow rig when both ports were positioned in different orientations around its valve axis. Two parameters, the loss rate of mean flow coefficient and the loss rate of angular momentum, were defined to describe the degree of interference between the flows discharging from the two adjacent intake valves. Velocity distribution in the vicinity and circumference of the intake valves was measured using Hot Wire Anemometer to further study the intake flow interference for different port combinations.
Technical Paper

The Optimum Design for Frictional Surface of Piston Ring of Engines

1999-05-03
1999-01-1526
Based on the principle of conjugate curve surface and the theory of hydrodynamic lubrication, the similar spherical spiral surface, which has the best lubrication effect, was obtained in the paper. Experiment show, this kind of frictional surface is lower 15% at power loss, and it is higher 13% at service life than the traditional frictional surface of piston ring, (such as barrel, stepped, cuneiform, rectangle and so on).
Technical Paper

Experimental Study on Combustion Characteristics of Methane/Gasoline Dual-Fuel in a SI Engine at Different Load Conditions

2018-04-03
2018-01-1140
Methane as an attractive alternative fuel offers the most potential in clean combustion and low CO2 emissions. In this work, combustion characteristics of methane/gasoline dual-fuel were investigated in a spark-ignited engine with port-injection of methane and direct-injection of gasoline, allowing for variations in methane addition and excess air coefficient. Engine experimental results showed that under low load conditions, as methane mass rate was raised, there was a promotion in methane/gasoline dual-fuel combustion, and this became more obvious at lean conditions. Similar observations were also obtained when the engine was operated at intermediate load conditions, but a prolonged combustion duration was found with the methane addition. Further analysis showed that the promotion of methane/gasoline dual-fuel combustion with methane addition mainly occurred in the early stage of combustion, especially for lean conditions.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of the Direct Injection Dimethyl Ether Enabled Micro-Flame Ignited (MFI) Hybrid Combustion in a 4-Stroke Gasoline Engine

2018-04-03
2018-01-1247
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to improve gasoline engines’ efficiency and simultaneously achieve ultra-low NOx emissions. Two of the primary obstacles for applying CAI combustion are the control of combustion phasing and the maximum heat release rate. To solve these problems, dimethyl ether (DME) was directly injected into the cylinder to generate multi-point micro-flame through compression in order to manage the entire heat release of gasoline in the cylinder through port fuel injection, which is known as micro-flame ignited (MFI) hybrid combustion.
Technical Paper

Lane Detection System for Night Scenes

2018-08-07
2018-01-1617
Most of algorithms of lane detection mainly aim at the scenes of daytime. However, those algorithms are unstable for the lane detection at night because the camera is very sensitive to the light change. This paper proposed a lane detection algorithm that largely improves the detection system’s performance when it is used at night. The algorithm has two main stage: Image processing and Kalman filter (KF). The key process steps of Stage 1 are: extracting the Region of Interesting (ROI)→Edge Detection →Binarization→Hough→ Lane Selection→Lane fitting. First step, a ROI could be extracted according to the relatively fixed location of lanes. In step of edge detection, we use a creative filter named Correlation filter to remove image noise and remain the feature of lane. The filter matrix looks like “[0 1 1, −1 0 1; −1 −1 0]”. Next, the candidate lines are detected by the Hough transform, then, the equations of lane are acquired by fitting spots obtained from Hough.
Technical Paper

Experimental Investigation on the Failures of Engine Piston Subjected to Severe Knock

2019-04-02
2019-01-0705
The previous study indicates that the detonation waves generated by acetylene/oxygen mixture can converge in the combustion chamber. In order to verify the destructive effect of detonation wave convergence on piston materials, the detonation bomb device was modified to fundamentally investigate the material failures of aluminum alloy for pistons. The results show that the specimens are destroyed in the middle and edge region after dozens of detonations, which is consistent with the typical characteristics of the piston failures in engines. Therefore, the hypothesis that failures of piston material is caused by the detonation wave convergence is verified.
Technical Paper

A Comparative Study on the Fuel Economy Improvement of a Natural Gas SI Engine at the Lean Burn and the Stoichiometric Operation both with EGR under the Premise of Meeting EU6 Emission Legislation

2015-09-01
2015-01-1958
In order to further study the effects of air and EGR dilution on the fuel economy improvement of natural gas engines under the premise of meeting EU6 legislation, a comparison between stoichiometric operation with EGR and lean burn operation with and without EGR has been conducted at 1600rpm 50% and 75% load. The conversion efficiencies of the catalysts for both NOx and CH4 emissions are assumed at 90% for lean burn operation. Experiment results indicate that under the condition of meeting both NOx and CH4 predetermined engine-out emissions limits for EU6 legislation, lean operation with a small fraction of EGR dilution enables more advanced combustion phasing compared to pure lean operation, which results in much better fuel economy, thus further improvement compared to stoichiometric operation is achieved.
Technical Paper

Pump-End Control Technology for Small Engine Management System

2015-04-14
2015-01-1731
A pump-end control technology for pump-nozzle fuel supply unit, in which the pump is driven and controlled electrically for pressurizing and metering the fuel fed into an engine, is studied. The unit is composed of a solenoid driven plunger pump, a high-pressure fuel tube, and an auto-open nozzle, and only the pump is propelled by PWM power from an ECU. To achieve a higher metering accuracy, a metering theory deciding the fuel discharging rate was developed by studying the system using a physical-mathematical model. The developed so called T3 theory makes the fuel supply unit with excellent metering consistency under various conditions, which can meet the requirement of fuel supply unit application to small engine management system. The study reveals that an electrically characterized variable, T3, which is associated with the net output energy, can directly results in a mass discharge.
X