Refine Your Search

Topic

Search Results

Journal Article

The Impact of Gear Meshing Nonlinearities on the Vehicle Launch Shudder

2015-04-14
2015-01-0610
During the launch of a car, severe torsional vibration sometimes may occur in its driveline due to somewhat the slipping of the clutch, its intuitive sense for an occupant is the longitudinal vibration of the vehicle, referred to as the launch shudder whose characteristic frequency is from 5 to 25 Hz generally. As the main vibration sources of the driveline and its crucial nonlinear components, the variable stiffness and backlash of the gear meshing are considered, their impacts on the launch shudder are analyzed in this paper. Conformal mapping, finite element method and regression method etc. are the main approaches to calculate the variable meshing stiffness of a gear pair. If this stiffness is get, it can usually be substituted for its approximate analytical expression, just with finite harmonic terms, in Fourier Series form into Ordinary Differential Equations(ODEs) to calculate the vehicle responses with its nonlinearity considered.
Technical Paper

Joint Calibration of Dual LiDARs and Camera Using a Circular Chessboard

2020-04-14
2020-01-0098
Environmental perception is a crucial subsystem in autonomous vehicles. In order to build safe and efficient traffic transportation, several researches have been proposed to build accurate, robust and real-time perception systems. Camera and LiDAR are widely equipped on autonomous self-driving cars and developed with many algorithms in recent years. The fusion system of camera and LiDAR provides state-of the-art methods for environmental perception due to the defects of single vehicular sensor. Extrinsic parameter calibration is able to align the coordinate systems of sensors and has been drawing enormous attention. However, differ from spatial alignment of two sensors’ data, joint calibration of multi-sensors (more than two sensors) should balance the degree of alignment between each two sensors.
Technical Paper

Recent Progress on In-Situ Monitoring and Mechanism Study of Battery Thermal Runaway Process

2020-04-14
2020-01-0861
Lithium-ion batteries (LIBs) with relatively high energy, power density and eco-friendly characteristic are considered as a vital energy source in consumer market of portable electronics and transportation sector especially in electric vehicles (EVs). To meet the higher capacity requirements, the nickel-rich LIBs with higher capacity has been used as the commercial power batteries. However, the battery with higher energy density is more destructive, which could result in thermal runaway accidents and make the battery safety issues become more and more prominent. Thermal runaway of LIBs is one of the key scientific problems in safety issues. Until now, the inducement of thermal runaway process is complicated which perplex researchers and industry a lot. On the one hand, the internal mechanism about thermal runaway should be deeply studied. On the other hand, in-situ monitoring should be developed to supply the mechanism study and early warning.
Technical Paper

IMM-KF Algorithm for Multitarget Tracking of On-Road Vehicle

2020-04-14
2020-01-0117
Tracking vehicle trajectories is essential for autonomous vehicles and advanced driver-assistance systems to understand traffic environment and evaluate collision risk. In order to reduce the position deviation and fluctuation of tracking on-road vehicle by millimeter-wave radar (MMWR), an interactive multi-model Kalman filter (IMM-KF) tracking algorithm including data association and track management is proposed. In general, it is difficult to model the target vehicle accurately due to lack of vehicle kinematics parameters, like wheel base, uncertainty of driving behavior and limitation of sensor’s field of view. To handle the uncertainty problem, an interacting multiple model (IMM) approach using Kalman filters is employed to estimate multitarget’s states. Then the compensation of radar ego motion is achieved, since the original measurement is under the radar polar coordinate system.
Technical Paper

The Effect of Unfine-Tuned Super-Resolution Networks Act on Object Detection

2020-02-24
2020-01-5034
In order to explore approaches for improving object detection accuracy in intelligent vehicle system, we exploit super-resolution techniques. A novel method is proposed to confirm the conjecture whether some popular super-resolution networks used for environmental perception of intelligent vehicles and robots can indeed improve the detection accuracy. COCO dataset which contains images from complex ordinary environment is utilized for the verification experiment, due to it can adequately verify the generalization of each algorithm and the consistency of experimental results. Using two representative object detection networks to produce the detection results, namely Faster R-CNN and YOLOv3, we devise to reduce the impact of resizing operation. The two networks allow us to compare the performance of object detection between using original and super-resolved images. We quantify the effect of each super-resolution techniques as well.
Technical Paper

Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine

2017-03-28
2017-01-0576
Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
Technical Paper

In-Vehicle Driving Posture Reconstruction from 3D Scanning Data Using a 3D Digital Human Modeling Tool

2016-04-05
2016-01-1357
Driving posture study is essential for the evaluation of the occupant packaging. This paper presents a method of reconstructing driver’s postures in a real vehicle using a 3D laser scanner and Human Builder (HB), the digital human modeling tool under CATIA. The scanning data was at first converted into the format readable by CATIA, and then a personalized HB manikin was generated mainly using stature, sitting height and weight. Its pelvis position and joint angles were manually adjusted so as to match the manikin with the scan envelop. If needed, a fine adjustment of some anthropometric dimensions was also preceded. Finally the personalized manikin was put in the vehicle coordinate system, and joint angels and joint positions were extracted for further analysis.
Technical Paper

Hybrid Camera-Radar Vehicle Tracking with Image Perceptual Hash Encoding

2017-09-23
2017-01-1971
For sensing system, the trustworthiness of the variant sensors is the crucial point when dealing with advanced driving assistant system application. In this paper, an approach to a hybrid camera-radar application of vehicle tracking is presented, able to meet the requirement of such demand. Most of the time, different types of commercial sensors available nowadays specialize in different situations, such as the ability of offering a wealth of detailed information about the scene for the camera or the powerful resistance to the severe weather for the millimeter-wave (MMW) radar. The detection and tracking in different sensors are usually independent. Thus, the work here that combines the variant information provided by different sensors is indispensable and worthwhile. For the real-time requirement of merging the measurement of automotive MMW radar in high speed, this paper first proposes a fast vehicle tracking algorithm based on image perceptual hash encoding.
Technical Paper

Study on Target Tracking Based on Vision and Radar Sensor Fusion

2018-04-03
2018-01-0613
Faced with intricate traffic conditions, the single sensor has been unable to meet the safety requirements of Advanced Driver Assistance Systems (ADAS) and autonomous driving. In the field of multi-target tracking, the number of targets detected by vision sensor is sometimes less than the current tracks while the number of targets detected by millimeter wave radar is more than the current tracks. Hence, a multi-sensor information fusion algorithm is presented by utilizing advantage of both vision sensor and millimeter wave radar. The multi-sensor fusion algorithm is based on centralized fusion strategy that the fusion center takes a unified track management. At First, vision sensor and radar are used to detect the target and to measure the range and the azimuth angle of the target. Then, the detections data from vision sensor and radar is transferred to fusion center to join the multi-target tracking with the prediction of current tracks.
Technical Paper

Development and Evaluation of the Performance Characteristics of a Poly-Disperse Droplet Stream Generator

2013-04-08
2013-01-1617
A specially designed generator has been developed to produce poly-disperse droplet streams: A liquid fuel (n-heptane) is metered to an ultrasonic atomizer to produce droplets, which are then carried and accelerated vertically upwards through a nozzle tube by carrier-air flow. Conditions of the streams at the nozzle exit are modulated by varying the length of nozzle tubes, the fuel and carrier-air flow rate. Optical measurement techniques such as direct photography method, schlieren photography and particle image velocimetry (PIV) are employed to characterize its performance characteristics. Effects of the nozzle tube length, the carrier-air and fuel flow rate are investigated to evaluate the performance of the generator. Longer nozzle tubes provide a better flow guidance for the carrier-air, and tend to generate streams with less and smaller droplets due to the transporting losses.
Technical Paper

A Trust Establishment Mechanism of VANETs based on Fuzzy Analytical Hierarchy Process (FAHP)

2022-03-29
2022-01-0142
As the connectivity of vehicles increases rapidly, more vehicles have the capability to communicate with each other. Because Vehicular Ad-hoc NETworks (VANETs) have the characteristics of solid mobility and decentralization, traditional security strategies such as authentication, firewall, and access control are difficult to play an influential role. As a soft security method, trust management can ensure the security attributes of VANETs. However, the rapid growth of newly encountered nodes of the trust management system also increases the requirements for trust establishing mechanisms. Without a proper trust establishment mechanism, the trust value of the newly encountered nodes will deviate significantly from its actual performance, and the trust management system will suffer from newcomer attacks.
Technical Paper

Experimental Study on Diesel Spray Characteristics at Different Altitudes

2018-04-03
2018-01-0308
In this study, effects of altitude on free diesel spray morphology, macroscopic spray characteristics and air-fuel mixing process were investigated. The diesel spray visualization experiment using high-speed photography was performed in a constant volume chamber which reproduced the injection diesel-like thermodynamic conditions of a heavy-duty turbocharged diesel engine operating at sea level and 1000 m, 2000 m, 3000 m and 4500 m above sea level. The results showed that the spray morphology became narrower and longer at higher altitude, and small vortex-like structures were observed on the downstream spray periphery. Spray penetration increased and spray angle decreased with increasing altitude. At altitudes of 0 m, 1000 m, 2000 m, 3000 m and 4500 m, the spray penetration at 1.45 ms after start of injection (ASOI) were 79.54 mm, 80.51 mm, 81.49 mm, 83.29 mm and 88.92 mm respectively, and the spray angle were 10.9°, 10.8°, 10.7°, 10.4°and 9.8° respectively.
Technical Paper

Model Based CAE Technology for the Development of Automotive Embedded Distributed Control System

2005-02-01
2005-01-3133
Automotive embedded DCS is widely used to solve automotive control problems. This paper presents a model-driven development technology for such systems. Models of automotive embedded DCS are built up strictly complying with the four-layer-model architecture, which is presented by Model-Driven Architecture (MDA). Three kinds of models are used to describe the protocol data structure, the algorithm process and visualization aspects of automotive embedded DCS. Corresponding XML databases are created based upon these models. As a single data source, these databases play key roles in further development phases, including generating the protocol specification, MC&D systems and embedded programming, etc. Some demonstrative applications are presented in this paper.
Technical Paper

Lane Marking Detection for Highway Scenes based on Solid-state LiDARs

2021-12-15
2021-01-7008
Lane marking detection plays a crucial role in Autonomous Driving Systems or Advanced Driving Assistance System. Vision based lane marking detection technology has been well discussed and put into practical application. LiDAR is more stable for challenging environment compared to cameras, and with the development of LiDAR technology, price and lifetime are no longer an issue. We propose a lane marking detection algorithm based on solid-state LiDARs. First a series of data pre-processing operations were done for the solid-state LiDARs with small field of view, and the needed ground points are extracted by the RANSAC method. Then, based on the OTSU method, we propose an approach for extracting lane marking points using intensity information.
Technical Paper

The Pendulum Motion Measured Digital Photogrammetry for a Centrifugal Pendulum Vibration Absorber

2023-04-11
2023-01-0124
Centrifugal Pendulum Vibration Absorber (CPVA for short) is used to absorb torsional vibrations caused by the shifting motion of the engine. It is increasingly used in modern powertrains. In the research of the dynamic characteristics of the CPVA, it is necessary to obtain the real motion of the pendulum to compensate the fitting performance of mathematical model. The usual method is to install an angle sensor to measure the movement of the pendulum. On the one hand, the installation of the sensor will affect its movement to a certain extent, so that the measurement results do not match the actual motion. On the other hand, the motion of the pendulum is not only the rotational motion around the rotational axis of the CPVA rotor, but also has translation relative to it. As a result, it is difficult to obtain accurate motion only by the angle sensor. We proposed a non-contact centrifugal pendulum motion measurement method.
Technical Paper

Vehicle Kinematics-Based Image Augmentation against Motion Blur for Object Detectors

2023-04-11
2023-01-0050
High-speed vehicles in low illumination environments severely blur the images used in object detectors, which poses a potential threat to object detector-based advanced driver assistance systems (ADAS) and autonomous driving systems. Augmenting the training images for object detectors is an efficient way to mitigate the threat from motion blur. However, little attention has been paid to the motion of the vehicle and the position of objects in the traffic scene, which limits the consistence between the resulting augmented images and traffic scenes. In this paper, we present a vehicle kinematics-based image augmentation algorithm by modeling and analyzing the traffic scenes to generate more realistic augmented images and achieve higher robustness improvement on object detectors against motion blur. Firstly, we propose a traffic scene model considering vehicle motion and the relationship between the vehicle and the object in the traffic scene.
Technical Paper

A Unified Frequency Understanding of Image Corruptions and its Application to Autonomous Driving

2023-04-11
2023-01-0060
Image corruptions due to noise, blur, contrast change, etc., could lead to a significant performance decline of Deep Neural Networks (DNN), which poses a potential threat to DNN-based autonomous vehicles. Previous works attempted to explain corruption from a Fourier perspective. By comparing the absolute Fourier spectrum difference between corrupted images and clean images in the RGB color space, they regard the noise from some corruptions (Gaussian noise, defocus blur, etc.) as concentrating on the high-frequency components while others (contrast, fog, etc.) concentrate on the low-frequency components. In this work, we present a new perspective that unifies corruptions as noise from high frequency and thus propose an image augmentation algorithm to achieve a more robust performance against common corruptions. First, we notice the 1/fα statistical rule of the natural image's spectrum and the channels-wise differential sensitivity on the YCbCr color space of the Human Visual System.
Technical Paper

Robust Multi-Lane Detection and Tracking in Temporal-Spatial Based on Particle Filtering

2019-04-02
2019-01-0885
The camera-based advanced driver assistance systems (ADAS) like lane departure warning system (LDWS) and lane keeping assist (LKA) can make vehicles safer and driving easier. Lane detection is indispensable for these lane-based systems for achieving vehicle local localization and behavior prediction. Since the vision is vulnerable to the variable environment conditions such as bad weather, occlusions and illumination, the robustness is important. In this paper, a robust algorithm for detecting and tracking multiple lanes with arbitrary shape is proposed. We extend the previously lane detection and tracking process from the space domain to the temporal-spatial domain by using a more robust and general multi-lane model. First, new slice images containing temporal information are generated from image sequences. Instead of binarization process, we use a more general detector for extracting the lane marker candidates with prior knowledge to generate the binary slice image.
Technical Paper

Potential Risk Assessment Algorithm in Car Following

2019-04-02
2019-01-1024
In this paper, a potential risk assessment algorithm is proposed. The obvious risk assessment measure is defined as time to collision (TTC), whereas the potential risk measure is defined as the time before the host vehicle has to decelerate to avoid a rear-end collision assuming that the target vehicle brakes, i.e. time margin (TM). The driving behavior of the human driver in the dangerous car following scenario is studied by using the naturalistic driving data collected by video drive record (VDR), which include 78 real dangerous car following dangerous scenarios. A potential risk assessment algorithm was constructed using TM and the dangerous car following scenarios. Firstly, the braking starting time during dangerous car following is identified. Next, the TM at brake starting time of the 78 dangerous car following scenarios is analyzed. In the last, the thresholds of the potential risk levels are achieved.
Technical Paper

Research on Shear Test of New Style Automotive Structural Adhesive

2014-04-01
2014-01-0828
In this paper, Digital Image Correlation Method (DICM) is employed to measure the shear mechanical property of the new style automotive structural adhesive specimens and traditional spot welded specimens under quasi static uniaxial shear tensile test. This experiment adopts a non-contact measuring method to measure the strain of specimens. A CCD and a computer image processing system are used to capture and record the real-time surface images of the specimens before and after deformation. Digital correlation software is used to process the imagines before and after deformation to obtain the specimen's strain of the moment. And then both the force-displacement curve and the stress-strain curve during the tensile process could be obtained. The test and analysis results show that the new style structural adhesive specimens have a great advantage with the spot welded specimens. It provides experimental evidence for further improvement of this structural adhesive.
X