Refine Your Search

Topic

Author

Search Results

Journal Article

A Freezable Heat Exchanger for Space Suit Radiator Systems

2008-06-29
2008-01-2111
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment, the load from the electrical components and incident radiation. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus simple and highly reliable. However, past freezable radiators have been too heavy.
Journal Article

A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

2009-07-12
2009-01-2591
After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Some lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot predict all possible events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew.
Technical Paper

A Test Plan for Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

2008-06-29
2008-01-2113
The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source.
Technical Paper

Access Systems for Partial Gravity Exploration & Rescue: Results from Prototype Testing in an Analog Environment

2007-07-09
2007-01-3033
An EVA simulation with a medical contingency scenario was conducted in 2006 with the NASA Haughton-Mars and EVA Physiology System and Performance Projects, to develop medical contingency management and evacuation techniques for planetary surface exploration. A rescue/evacuation system to allow two rescuer astronauts to evacuate one incapacitated astronaut was evaluated. The rescue system was utilized effectively to extract an injured astronaut up a slope of15-25° and into a surface mobility rover for transport to a simulated habitat for advanced medical care. Further research is recommended to evaluate the effects of reduced gravity and to develop synergies with other surface systems for carrying out the contingency procedures.
Technical Paper

Advanced Design Heat Pump/Radiator for EVA Suits

2009-07-12
2009-01-2406
Absorption cooling using a lithium chloride/water heat pump can enable lightweight and effective thermal control for Extravehicular Activity (EVA) suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member, This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment, Data from tests of the system's modular components have validated the design models and allowed predictions of the size and weight of a complete system.
Technical Paper

Advanced Extravehicular Activity Education Outreach in Support of the Vision for Space Exploration

2005-07-11
2005-01-3100
The Vision for Space Exploration outlines NASA's goals to return to the Moon, and travel on to Mars. The exploration activities associated with these endeavors will include both space and surface extravehicular activities (EVAs). This paper describes the plans for education outreach activities and products related to the technological developments and challenges similar to those being addressed by the Advanced EVA (AEVA) team. Efforts to involve and coordinate educational research projects with the AEVA team will also be discussed. The proposed activities and products will provide hands-on, interactive exercises through workshops, presentations, and demonstrations to allow students of all levels to learn about and experience the design challenges similar to what NASA deals with everyday in developing EVA systems.
Technical Paper

Advanced Integration Matrix Education Outreach

2004-07-19
2004-01-2481
The Advanced Integration Matrix (AIM) will design a ground-based test facility for developing revolutionary integrated systems for joint human-robotic missions in order to study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO). This paper describes development plans for educational outreach activities related to technological and operational integration scenarios similar to the challenges that will be encountered through this project. The education outreach activities will provide hands-on, interactive exercises to allow students of all levels to experience design and operational challenges similar to what NASA deals with everyday in performing the integration of complex missions. These experiences will relate to and impact students' everyday lives by demonstrating how their interests in science and engineering can develop into future careers, and reinforcing the concepts of teamwork and conflict resolution.
Technical Paper

Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for Use on International Space Station

2004-07-19
2004-01-2446
When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of “Technology Readiness Level” (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.
Technical Paper

Continuously Regenerable Freeze-Out CO2 Control Technology

2007-07-09
2007-01-3270
Carbon dioxide (CO2) removal technology development for portable life support systems (PLSS) has traditionally concentrated in the areas of solid and liquid chemical sorbents and semi-permeable membranes. Most of these systems are too heavy in gravity environments, require prohibitive amounts of consumables for operation on long term planetary missions, or are inoperable on the surface of Mars due to the presence of a CO2 atmosphere. This paper describes the effort performed to mature an innovative CO2 removal technology that meets NASA's planetary mission needs while adhering to the important guiding principles of simplicity, reliability, and operability. A breadboard cryogenic carbon dioxide scrubber for an ejector-based cryogenic PLSS was developed, designed, and tested. The scrubber freezes CO2 and other trace contaminants out of expired ventilation loop gas using cooling available from a liquid oxygen (LOX) based PLSS.
Journal Article

Design Description and Initial Characterization Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

2009-07-12
2009-01-2419
NASA's proposed lunar lander, Altair, will be exposed to vastly different external temperatures following launch till its final destination on the moon. In addition, the heat rejection is lowest at the lowest environmental temperatures (0.5 kW @ 4K) and highest at the highest environmental temperature (4.5 kW @ 215K). This places a severe demand on the radiator design to handle these extreme turn-down requirements. A radiator with digital turn-down capability is currently under study at JPL as a robust means to meet the heat rejection demands and provide freeze protection while minimizing mass and power consumption. Turndown is achieved by independent control of flow branches with isolating latch valves and a gear pump to evacuate the isolated branches. A bench-top test was conducted to characterize the digital radiator concept. Testing focused on the demonstration of proper valve sequencing to achieve turn-down and recharge of flow legs.
Technical Paper

Development of Life Support System Technologies for Human Lunar Missions

2009-07-12
2009-01-2483
With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration's (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project's goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA's Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers.
Technical Paper

Development, Performance and Flight Test Results of the Cabin Air Cleaner (CAC) for the Shuttle Orbiter

1994-06-01
941253
Debris and particulate filtration problems have been persistent during flights on the Space Shuttle Orbiter since STS-6. Analysis of the Orbiter Environmental and Life Support System (ECLSS) indicated that both the volumetric flows and velocities were essentially designed for ventilation, heat removal, and gas blending with minimal consideration for debris removal. The baseline Orbiter filtration system consisted of a single 300 micron filter at the inlet of the cabin fan primarily to protect the cabin fan hardware. This filter was increased to 70 microns and additional filters added after some hardware failures occurred. However, these changes did not clean the environment as expected. An evaluation of the size and type of debris in the cabin air determined that the debris is able to “short-circuit” the cabin filtration system and remains in the cabin air causing the crew discomfort.
Technical Paper

Digital Learning Network Education Events for the Desert Research and Technology Studies

2007-07-09
2007-01-3063
NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. As part of NASA's Strategic Plan to reach the next generation of space explorers, the DLN develops and delivers educational programs that reinforce principles in the areas of science, technology, engineering and mathematics. The DLN has created a series of live education videoconferences connecting the Desert Research and Technology Studies (RATS) field test to students across the United States. The programs are also extended to students around the world via live webcasting. The primary focus of the events is the Vision for Space Exploration. During the programs, Desert RATS engineers and scientists inform and inspire students about the importance of exploration and share the importance of the field test as it correlates with plans to return to the Moon and explore Mars. This paper describes the events that took place in September 2006.
Technical Paper

Enhanced Performance Evaporative Heat Sinks for Space Applications

1998-07-13
981779
An evaporative heat sink has been designed and built by AlliedSignal for NASA's Johnson Space Center. The unit is a demonstrator of a primary heat exchanger for NASA's prototype Crew Return Vehicle (CRV), designated the X-38. The primary heat exchanger is responsible for rejecting the heat produced by both the flight crew and the avionics. Spacecraft evaporative heat sinks utilize space vacuum as a resource to control the vapor pressure of a liquid. For the X-38, water has been chosen as the heat transport fluid. A portion of this coolant flow is bled off for use as the evaporant. At sufficiently low pressures, the water can be made to boil at temperatures approaching its freezing point. Heat transferred to liquid water in this state will cause the liquid to evaporate, thus creating a heat sink for the spacecraft's coolant loop. The CRV mission requires the heat exchanger to be compact and low in mass.
Technical Paper

Evaluation of Methods for Remediating Biofilms in Spacecraft Potable Water Systems

1994-06-01
941388
Controlling microbial growth and biofilm formation in spacecraft water-distribution systems is necessary to protect the health of the crew. Methods to decontaminate the water system in flight may be needed to support long-term missions. We evaluated the ability of iodine and ozone to kill attached bacteria and remove biofilms formed on stainless steel coupons. The biofilms were developed by placing the coupons in a manifold attached to the effluent line of a simulated spacecraft water-distribution system. After biofilms were established, the coupons were removed and placed in a treatment manifold in a separate water treatment system where they were exposed to the chemical treatments for various periods. Disinfection efficiency over time was measured by counting the bacteria that could be recovered from the coupons using a sonication and plate count technique. Scanning electron microscopy was also used to determine whether the treatments actually removed the biofilm.
Technical Paper

First Astronaut - Rover Interaction Field Test

2000-07-10
2000-01-2482
The first ever Astronaut - Rover (ASRO) Interaction Field Test was conducted successfully on February 22-27, 1999, in Silver Lake, Mojave Desert, California in a representative surface terrain. This test was a joint effort between the NASA Ames Research Center, Moffett Field, California and the NASA Johnson Space Center, Houston, Texas to investigate the interaction between humans and robotic rovers for potential future planetary surface exploration. As prototype advanced planetary surface space suit and rover technologies are being developed for human planetary surface exploration, it is desirable to better understand the interaction and potential benefits of an Extravehiclar Activity (EVA) crewmember interacting with a robotic rover. This interaction between an EVA astronaut and a robotic rover is seen as complementary and can greatly enhance the productivity and safety of surface excursions.
Technical Paper

First Lunar Outpost Extravehicular Life Support System Evaluation

1993-07-01
932188
A preliminary evaluation of several portable life support system (PLSS) concepts which could be used during the First Lunar Outpost (FLO) mission extravehicular activities (EVA's) has been performed. The weight, volume and consumables characteristics for the various PLSS concepts were estimated. Thermal effects of day and night EVA's on PLSS consumables usage and hardware requirements were evaluated. The benefit of adding a radiator and the total PLSS weight to be carried by the astronaut were also evaluated for each of the concepts. The results of the evaluation were used to provide baseline weight, volume and consumables characteristics of the PLSS to be used on the 45 day FLO mission. The benefit of radiators was shown to be substantial. Considerable consumables savings were predicted for EVA schedules with a high concentration of nighttime EVA's versus daytime EVA's.
Technical Paper

Freeze Tolerant Radiator for Advanced EMU

2004-07-19
2004-01-2263
The current Extravehicular Mobility Unit (EMU) system provides thermal control using a sublimator to reject both the heat produced by the astronaut's metabolic activity as well as the heat produced by the Portable Life Support Unit (PLSS). This sublimator vents up to eight pounds of water each Extravehicular Activity (EVA). If this load could be radiated to space, the amount of water that would need to be sublimated could be greatly reduced. There is enough surface area on the EMU that almost all of the heat can be rejected by radiation. Radiators, however, reject heat at a relatively constant rate, while the astronaut generates heat at a variable rate. To accommodate this variable heat load, NASA is developing a new freeze tolerant radiator where the tubes can selectively freeze to “turn down” the radiator and adjust to the heat rejection requirement. This radiator design significantly reduces the amount of expendable water needed for the sublimator.
Technical Paper

High Temperature Lift Heat Pump Refrigerant and Thermodynamic Cycle Selection

1994-06-01
941272
This paper describes the process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275K from a habitable volume when the external thermal environment is severe. For example, a long term habitat will reject heat from a space radiator to a 325K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components and the power supply system.
Technical Paper

Human and Robotic Enabling Performance System Development and Testing

2005-07-11
2005-01-2969
With a renewed focus on manned exploration, NASA is beginning to prepare for the challenges that lie ahead. Future manned missions will require a symbiosis of human and robotic infrastructure. As a step towards understanding the roles of humans and robots in future planetary exploration, NASA headquarters funded ILC Dover and the University of Maryland to perform research in the area of human and robotic interfaces. The research focused on development and testing of communication components, robotic command and control interfaces, electronic displays, EVA navigation software and hardware, and EVA lighting. The funded research was a 12-month effort culminating in a field test with NASA personnel.
X