Browse Publications Technical Papers 2011-38-0106
2011-06-13

Parallel Computing Applied to Three-Dimensional Droplet Trajectory Simulation in Lagrangian Approach 2011-38-0106

In the current study, continued efforts to improve a computational in-flight ice accretion prediction tool are introduced together with obtained results. The computational tool follows the usual procedure for computing ice shapes around three-dimensional bodies like wings, intakes, etc., i.e., flow-field calculation, droplet trajectory determination, droplet collection efficiencies calculation, convective heat transfer coefficient distribution computation and finally ice accretion rates determination using the Extended Messinger Method. Finally, integration of ice accretion rates over time yields the ice shapes and the final geometry. The emphasis in this study is on parallel computation of the droplet trajectories using the Langrangian approach. Since almost the entire computational time is used by the calculation of droplet trajectories in the developed computational tool, parallel computation allows fast and accurate analyses to be performed in a fraction of the time required for sequential computing. This allows parametric analyses covering a large number of parameters over wide ranges to be performed during design, development and certification of air vehicles. Large droplet effects, such as non-spherical particles, droplet breakup and droplet splash are accounted for during the computations.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X