Browse Publications Technical Papers 2012-32-0096

3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances - The Effects on Tumble Motion and Mean Turbulent Intensity Distribution 2012-32-0096

In scooter/motorbike engines coherent and stable tumble motion generation is still considered an effective mean in order to both reduce engine emissions and promote higher levels of combustion efficiency. The scientific research also assessed that squish motion is an effective mean for speeding up the combustion in a combustion process already fast. In a previous technical paper the authors demonstrated that for an engine having a high C/D ratio the squish motion is not only not necessary but also detrimental for the stability of the tumble motion itself, because there is a strong interaction between these two motions with the consequent formation of secondary vortices, which in turn penalizes the tumble breakdown and the turbulent kinetic energy production.
The present paper starts with the development of a theoretical model which will be applied to different engine classes demonstrating how the relative importance of the tumble and squish varies changing the typical design parameters. The final achievements will be to show that the squish flow importance in promoting the turbulence reduces moving to small bore square engines. CFD simulation of the intake flow will be then performed with AVL Fire v. 2010 for investigating in more detail the stroke influence on the in-cylinder turbulence generation.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Assessment of the Influence of Intake Duct Geometrical Parameters on the Tumble Motion Generation in a Small Gasoline Engine


View Details


Effects of the LES-Mode SGS Viscosity Formulation on the Hybrid URANS/LES Modeling of Turbulent Fuel Sprays


View Details


A Visual Investigation of CFD-Predicted In-Cylinder Mechanisms That Control First- and Second-Stage Ignition in Diesel Jets


View Details