Browse Publications Technical Papers 2013-01-2610
2013-10-14

Investigation to Charge Cooling Effect of Evaporation of Ethanol Fuel Directly Injected in a Gasoline Port Injection Engine 2013-01-2610

Ethanol direct injection plus gasoline port injection (EDI+GPI) is a new technology to make the use of ethanol fuel more effective and efficient in spark ignition engines. It takes the advantages of ethanol fuel, such as its greater latent heat of vaporization than that of gasoline fuel, to enhance the charge cooling effect and consequently to increase the compression ratio and improve the engine thermal efficiency. Experimental investigation has shown improvement in the performance of a single cylinder spark ignition engine equipped with EDI+GPI. It was inferred that the charge cooling enhanced by EDI played an important role. To investigate it, a CFD model has been developed for the experimentally tested engine. The Eulerian-Lagrangian approach and Discrete Droplet Model were used to model the evolution of the fuel sprays. The model was verified by comparing the numerical and experimental results of cylinder pressure during the intake and compression strokes. Mesh density and time step sensitivities have been tested. The verified model was used to investigate the charge cooling effect of EDI in terms of spatial and temporal distributions of cylinder temperature and fuel vapor fraction. Compared with GPI only, EDI+GPI demonstrated stronger effect on charge cooling by decreased in-cylinder temperature. The cooling effect was limited by the low evaporation rate of the ethanol fuel due to its lower saturation vapor pressure than gasoline's in low temperature conditions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

The Effect of Fuel Temperature on the Ethanol Direct Injection Spray Characteristics of a Multi-hole Injector

2014-01-2734

View Details

TECHNICAL PAPER

An Overview of VCR Technology and Its Effects on a Turbocharged DI Engine Fueled with Ethanol and Gasoline

2017-36-0357

View Details

JOURNAL ARTICLE

Fuel Spray Evaporation and Mixture Formation Processes of Ethanol/Gasoline Blend Injected by Hole-Type Nozzle for DISI Engine

2012-32-0018

View Details

X