Browse Publications Technical Papers 2016-01-0933

Development of Non-Copper Advanced Spinel Mixed Metal Oxides for Zero-Precious Metal and Ultra-Low Precious Metal Next-Generation TWC 2016-01-0933

In the context of evolving market conditions, the three-way catalyst (TWC) design is entering an exciting new phase. It remains the main emission control strategy for gasoline powered vehicles; in the meantime a rapid period of evolving engine developments, the constrained tailpipe regulations and the material supply issues present a unique challenge to the catalyst developers. A key approach here is to achieve highly beneficial emission performance based on the ultra-low PGM levels. In this regard, we mainly focus on the materials design and have developed the advanced spinel oxides for zero precious metals (ZPGM) and synergized precious metals (SPGM) TWCs. These advanced spinel materials showed improved thermal stability compared to that of PGM based standard materials. Fundamental studies on the microstructure of spinel oxide with newly developed composition confirm the aging stability. The vehicle test data are reported for 10 g/ft3 SPGM close-coupled (CC) and 2 g/ft3 SPGM Underfloor (UF) catalysts based on the advanced spinel material. Prior to testing on tier2 bin 4 turbo gasoline direct injection (TGDi) vehicle using FTP and US06 drive cycles, the tested SPGM CC and UF catalysts are aged under standard 4-mode aging cycle. Our initial data show that SPGM UF performs as effectively as the standard high PGM technology UF catalyst, with lower weighted tailpipe NOx. In addition, SPGM CC catalyst with the low PGM loading (10 g/ft3) performs as effectively as the standard high PGM (>100 g/ft3) technology CC catalyst for NOx and CO conversions, but leaving a room for the improvement of non-methane hydrocarbon (NMHC) conversion performance.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Alternative Technology for Platinum Group Metals in Automobile Exhaust Gas Catalysts


View Details


CFD Analysis of a Catalytic Converter Using Supported Copper Catalyst to Reduce Particulate Matter and Achieve Limited Back Pressure in Diesel Engine Exhaust


View Details


Reduction of Exhaust Gas Emissions by Using Hydrocarbon Adsorber Systems


View Details