Browse Publications Technical Papers 2017-01-0555

Numerical Simulation and Flame Analysis of Combustion and Knock in a DISI Optically Accessible Research Engine 2017-01-0555

The increasing limitations in engine emissions and fuel consumption have led researchers to the need to accurately predict combustion and related events in gasoline engines. In particular, knock is one of the most limiting factors for modern SI units, severely hindering thermal efficiency improvements. Modern CFD simulations are becoming an affordable instrument to support experimental practice from the early design to the detailed calibration stage. To this aim, combustion and knock models in RANS formalism provide good time-to-solution trade-off allowing to simulate mean flame front propagation and flame brush geometry, as well as “ensemble average” knock tendency in end-gases. Still, the level of confidence in the use of CFD tools strongly relies on the possibility to validate models and methodologies against experimental measurements.
In the paper, two sets of cycle-resolved flame visualizations are available from a single-cylinder 400 cm3 direct-injection spark-ignition (DISI) unit with optical access. The engine is operated at two spark timings, ranging from knock-safe to light-knock conditions.
On this basis, a numerical analysis is carried out to reproduce flame kernel growth and propagation using the well-known ECFM-3Z combustion model for all the operating conditions. CFD results are compared in terms of enflamed volume and flame morphology against cycle averaged experimental data. In addition, average knock is simulated by means of the in-house built UniMORE Knock Model [1] in terms of knock onset location and phasing.
The agreement between predicted and measured position of the flame front and knock inception location for the two different operating conditions confirms the validity of the adopted models and proves their predictive capability for engine design and optimization.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
We also recommend:

Comparison between 2 and 4-Stroke Engines for a 30 kW Range Extender


View Details


The Potential of the Variable Stroke Spark-Ignition Engine


View Details


Optimal Injection Strategies to Compensate for Injector Aging in Common Rail Fuel Systems


View Details