Browse Publications Technical Papers 2017-01-0962
2017-03-28

Lean Breakthrough Phenomena Analysis for TWC OBD on a Natural Gas Engine using a Dual-Site Dynamic Oxygen Storage Capacity Model 2017-01-0962

Oxygen storage capacity (OSC) is one of the most critical characteristics of a three-way catalyst (TWC) and is closely related to the catalyst aging and performance. In this study, a dynamic OSC model involving two oxygen storage sites with distinct kinetics was developed. The dual-site OSC model was validated on a bench reactor and a natural gas engine. The model was capable of predicting temperature dependence on OSC with H2, CO and CH4 as reductants. Also, the effects of oxygen concentration and space velocity on the amount of OSC were captured by the model.
The validated OSC model was applied to simulate lean breakthrough phenomena with varied space velocities and oxygen concentrations. It is found that OSC during lean breakthrough is not a constant for a particular TWC catalyst and is dependent on space velocity and oxygen concentration. Specifically, breakthrough time exhibits a non-linear, inverse correlation to oxygen flux. Breakthrough OSC increases slightly with oxygen concentration and increases significantly as space velocity decreases. Moreover, at high space velocities, the majority of breakthrough OSC is from the PGM-ceria surface site (kinetically controlled). At low space velocities, there is a substantial amount of breakthrough OSC from the sub-surface ceria site (diffusion controlled). Correlations of breakthrough time and breakthrough OSC as a function of oxygen concentration and space velocity were established. An alternative methodology of TWC OBD with the use of developed correlations was presented and discussed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Development of a Lab Reactor System for the Evaluation of Aftertreatment Catalysts for Stoichiometric Natural Gas Engines

2017-01-0999

View Details

TECHNICAL PAPER

Development and Test of a New Catalytic Converter for Natural Gas Fueled Engine

2008-01-1550

View Details

JOURNAL ARTICLE

Desulfation of Pd-based Oxidation Catalysts for Lean-burn Natural Gas and Dual-fuel Applications

2015-01-0991

View Details

X