Browse Publications Technical Papers 2017-01-2196
2017-10-08

A Comprehensive CFD-CHT Methodology for the Characterization of a Diesel Engine: from the Heat Transfer Prediction to the Thermal Field Evaluation 2017-01-2196

High power-density Diesel engines are characterized by remarkable thermo-mechanical loads. Therefore, compared to spark ignition engines, designers are forced to increase component strength in order to avoid failures. 3D-CFD simulations represent a powerful tool for the evaluation of the engine thermal field and may be used by designers, along with FE analyses, to ensure thermo-mechanical reliability.
The present work aims at providing an integrated in-cylinder/CHT methodology for the estimation of a Diesel engine thermal field. On one hand, in-cylinder simulations are fundamental to evaluate not only the integral amount of heat transfer to the combustion chamber walls, but also its point-wise distribution. To this specific aim, an improved heat transfer model based on a modified thermal wall function is adopted to estimate correctly wall heat fluxes due to combustion. On the other hand, a detailed Conjugate Heat Transfer model including both the solid components and the coolant circuit of the engine is needed, accounting for all the thermo-mechanical effects acting simultaneously during actual operations. Such comprehensive CHT methodology is here presented, with particular emphasis on a dedicated framework for the thermal simulation of the piston, to account for the mutual influence of many interplaying phenomena such as oil jet impingement, frictional losses and conduction with the surrounding components.
The predictive capabilities of the methodology are demonstrated both in terms of global thermal balance and local engine temperature distribution. In fact, numerical coolant heat rejection and thermal field are compared with experimental data provided by thermal survey and point-wise temperature measurements for two different mid-to-low revving speed operating conditions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Progressive Combustion in SI-Engines-Improved Empirical Models for Simulating and Optimizing Engine Performance

2008-01-1630

View Details

TECHNICAL PAPER

Multi-Zone Models of Combustion and Heat Transfer Processes in SI Engines

2014-01-1067

View Details

JOURNAL ARTICLE

Investigations on the Transient Wall Heat Transfer at Start-Up for SI Engines with Gasoline Direct Injection

2009-01-0613

View Details

X