Browse Publications Technical Papers 2018-22-0012
2018-11-12

Validation of a Finite Element 50th Percentile THOR Anthropomorphic Test Device in Multiple Sled Test Configurations 2018-22-0012

Computational models of anthropomorphic test devices (ATDs) can be used in crash simulations to quantify the injury risks to occupants in both a cost-effective and time-sensitive manner. The purpose of this study was to validate the performance of a 50th percentile THOR finite element (FE) model against a physical THOR ATD in 11 unique loading scenarios. Physical tests used for validation were performed on a Horizontal Impact Accelerator (HIA) where the peak sled acceleration ranged from 8-20 G and the time to peak acceleration ranged from 40-110 ms. The directions of sled acceleration relative to the THOR model consisted of -Gx (frontal impact), +GY (left-sided lateral impact), and +GZ (downward vertical impact) orientations. Simulation responses were compared to physical tests using the CORrelation and Analysis (CORA) method. Using a weighted method, the average response and standard error by direction was +Gy (0.83±0.03), -Gx (0.80±0.01), and +Gz (0.76±0.03). Qualitative and quantitative results demonstrated the FE model’s kinetics and kinematics were sufficiently validated against its counterpart physical model in the tested loading directions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X