Browse Publications Technical Papers 2019-01-0268

Influence of Elevated Injector Temperature on the Spray Characteristics of GDI Sprays 2019-01-0268

When fuel at elevated temperatures is injected into an ambient environment at a pressure lower than the saturation pressure of the fuel, the fuel vaporizes in the nozzle and/or immediately upon exiting the nozzle; that is, it undergoes flash boiling. It is characterized by a two-phase flow regime co-located with primary breakup, which significantly affects the spray characteristics. Under flash boiling conditions, the near nozzle spray angle increases, which can lead to shorter penetration because of increased entrainment. In a multi-hole injector this can cause other impacts downstream resulting from the increased plume to plume interactions.
To study the effect of injector temperature and injection pressure with real fuels, an experimental investigation of the spray characteristics of a summer grade gasoline fuel with 10% ethanol (E10) was conducted in an optically accessible constant volume spray vessel. A gasoline direct-injection injector with six holes typical of a side-injection engine was studied. Optical diagnostics included high-speed photography with alternate frame imaging from Mie-Scattering and Shadowgraph techniques. Ambient conditions representing Early Injection (45°C, 1 bar) and Late Injection (180°C, 4bar) conditions representative of gasoline direct injection events were studied at injector temperatures from 75 to 250°C and at injection pressures of 100, 150, 200 and 250 bar.
Results showed that for early injection condition, increased fuel temperature leads to two primary effects due to flash boiling: (i) an appreciable increase in spray angle near the nozzle exit followed by (ii) a decrease downstream of the nozzle due to the interaction of the plumes and collapsing sprays. For the early injection condition, spray penetration was observed to be minimum at 100°C followed by an increase in penetration at higher temperatures due to the collapsing sprays. For the late injection condition, the spray angle at the exit and downstream of the nozzle decreased with temperature. Besides, increased injection pressures lead to increased spray penetration due to higher injection momentum of the sprays outperforming the plume to plume interactions.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

An Investigation of Potential and Challenges with Higher Ethanol-gasoline Blend on a Single Cylinder Spark Ignition Research Engine


View Details


Analysis of Ethanol Fuel Blends


View Details


Compatibility Assessment of Plastic Infrastructure Materials with Test Fuels Representing E10 and iBu16


View Details