Browse Publications Technical Papers 2019-01-0595
2019-04-02

Pushing the Energy Limits of Lithium Ion Batteries through Fluorinated Materials 2019-01-0595

The use of electrolytes containing small fluorinated molecules to enable stable high voltage (>4.3 V) battery operation is the focus of this project. Previously, it has been shown that it is possible to operate lithium ion batteries utilizing several different cathode chemistries up to 4.5 V. Energy gains of 30-50% have been demonstrated when the battery is cycled at 4.5 V. High voltage cycling is accomplished by reducing the gas generation originating from electrolyte decomposition at high voltage. The primary mechanism for this is not completely understood, but the hypothesis is that the fluorinated molecules form a film on the highly oxidizing cathode. The protective film formation allows stable cycle life during high voltage operation. In addition, fluorinated electrolytes have the added benefit of being less flammable which increases safety performance of lithium ion batteries.
Highly fluorinated binder materials offer a variety of advantages (lower modulus, higher chemical resistance, better temperature stability) over the conventional PVDF binders used in current lithium ion batteries. Use of these highly fluorinated binder additives has a direct impact on battery manufacturing costs through decreased scrap rate. This is achieved through higher slurry stability (improved mixing, coating) and more flexible physical characteristics (improved winding). The trend towards higher voltage battery operation will also require increased binder stability.
This paper will address the advantages of both fluorinated electrolytes and binder materials as well as their role in future battery production.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

An Empirical Aging Model for Lithium-Ion Battery and Validation Using Real-Life Driving Scenarios

2020-01-0449

View Details

TECHNICAL PAPER

The Aging Law of Low Temperature Charging of Lithium-Ion Battery

2019-01-1204

View Details

TECHNICAL PAPER

A Novel Method for Estimation of State of Charge of Lithium-ion Battery using Extended Kalman Filter

2015-01-1183

View Details

X