Browse Publications Technical Papers 2019-01-1546
2019-06-05

Modeling and Validation for the Hysteretic Behavior of an Automatic Belt Tensioner 2019-01-1546

An automatic tensioner used in an engine front end accessory drive system (EFEADS) is taken as a study example in this paper. The working torque of the tensioner, which consists of the spring torque caused by a torsional spring and the frictional torques caused by the contact pairs, is analyzed by a mathematic analysis method and a finite element method. And the calculation and simulation are validated by a torque measurement versus angular displacement of a tensioner arm. The working torques of the tensioner under a loading and an unloading process are described by a bilinear hysteretic model, and are written as a function with a damping ratio. The rule of the action for the damping devices is investigated based on the simulation and a durability test of the tensioner. A finite element method for the tensioner without damping device is established. Then the radial deformation for the torsional spring under an unconstrained state is obtained. The analysis results have a good correlation with the measurements. The method presented in this paper is beneficial for predicting the working torque performance of an automatic tensioner, and reducing the design period and the cost for prototype validation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Virtual Simulation of Hood Slam Test

2011-26-0010

View Details

TECHNICAL PAPER

Design and Analysis of an Acrylic Front of a Novel Mechanical Highway Billboard

2021-01-0832

View Details

TECHNICAL PAPER

Prediction of the Life of CVJ Boot in Design Stage and Establishment of an Optimal Design Method with FEA

980847

View Details

X