Browse Publications Technical Papers 2020-01-1137
2020-04-14

Numerical Investigations on Strong Knocking Combustion under Advanced Compression Ignition Conditions 2020-01-1137

Homogeneous charge compression ignition (HCCI) combined with high compression ratio is an effective way to improve engines’ thermal efficiency. However, the severe thermodynamic conditions at high load may induce knocking combustion thus damage the engine body. In this study, advanced compression ignition knocking characteristics were parametrically investigated through RCM experiments and simulation analysis. First, the knocking characteristics were optically investigated. The experimental results show that there even exists detonation when the knock occurs thus the combustion chamber is damaged. Considering both safety and costs, the effects of different initial conditions were numerically investigated and the results show that knocking characteristics is more related to initial pressure other than initial temperature. The initial pressure has a great influence on peak pressure and knock intensity while the initial temperature on knock onset. Further analysis shows that knock intensity is mainly related to the energy density of the in-cylinder mixture and energy density is higher under higher pressure conditions. Then the effects of different cylinder wall temperature on the local autoignition thus knocking characteristics were further discussed. The results show that the increase of wall temperature can reduce the peak pressure and knock intensity, which is ascribed to that autoignition of the end gas is inhibited under high wall temperature conditions. Thus, the type of engine knock is translated from an SI-type knock to an HCCI-type knock. And HCCI-type knock is milder because the overpressure is over the whole combustion chamber. Finally, knocking combustion under different turbulence intensity were qualitatively evaluated by the function of MAPPING. It shows the autoignition is a little delayed under high turbulence intensity due to the enhanced mass and heat transfer. However, the knocking characteristics are nearly the same under the three turbulence conditions in terms of combustion phase and knock intensity, which proved the conclusion that knock intensity mainly depends on energy density.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Effects of Engine Speed, Fueling Rate, and Combustion Phasing on the Thermal Stratification Required to Limit HCCI Knocking Intensity

2005-01-2125

View Details

JOURNAL ARTICLE

Partial Fuel Stratification to Control HCCI Heat Release Rates: Fuel Composition and Other Factors Affecting Pre-Ignition Reactions of Two-Stage Ignition Fuels

2011-01-1359

View Details

TECHNICAL PAPER

Multi-dimensional Simulation of HCCI Engine Using Parallel Computation and Chemical Kinetics

2008-01-0966

View Details

X