Browse Publications Technical Papers 2020-01-5014
2020-02-06

Optimal Design for Maximum Fundamental Frequency and Minimum Intermediate Support Stiffness for Uniform and Stepped Beams Composed of Different Materials 2020-01-5014

The minimum support stiffness that achieves the maximum modal frequencies or critical speed is very important in the design of mechanical systems. The optimal values of the intermediate support stiffness and geometrical parameters of uniform and stepped Timoshenko beams composed of single or two materials are studied in order to maximize the modal frequency and minimize the intermediate support stiffness. Dynamic stiffness matrix (DSM) method and multi-objective particle swarm optimization (MOPSO) algorithm are used together to evaluate new optimal parameters. For single material, the results show that for uniform thick beams, the optimal maximum fundamental frequency and minimum intermediate support stiffness are lower than those of Bernoulli-Euler beams. In addition, the optimal design for stepped beams made of two metallic materials is investigated. For three different metallic combinations, gain factors of 1.561 to 2.745 are obtained for a beam without intermediate support. Comparison with experimental results is carried out. The current study and its results can be applied to improve the dynamic performance of many of industrial applications, such as guyed masts derricks, vertical tube furnaces, and long rotary machines with intermediate support.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Assembly Tolerance Analysis with Simulation and Optimization Techniques

870263

View Details

TECHNICAL PAPER

Using Multiple Processors for Monte Carlo Analysis of System Models

2008-01-1221

View Details

TECHNICAL PAPER

Numerical Simulation of Quenching Process at Caterpillar

931172

View Details

X