1975-02-01

The Importance of Secondary Air Mixing in Exhaust Thermal Reactor Systems 750174

Automotive thermal reactors have obtained high conversion efficiencies on engines with very rich carburetion, but fuel economy and reactor durability have suffered. Improved mixing of exhaust gas and secondary air in the engine exhaust port was examined as a means of improving reactor efficiency at less rich engine air-fuel ratios. Three air-injection systems which span a broad range of mixing capabilities were examined. Mixing characteristics were deduced from anemometry measurements of instantaneous secondary airflow, and emission performance of each system was generalized by a test program employing four steady-state conditions.
High-pressure, timed air injection provides the best mixing and the best reactor performance. Sparger (radial discharge) air injection tubes provide fair mixing and better performance than conventional open-ended air injection tubes, which exhibit poor mixing characteristics. Performance with sparger tubes is significantly poorer than with timed injection, but sparger tubes are more practical in terms of cost, complexity, and durability.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Three-Way Catalytic Muffler Using Progressive Air Injection for Automotive Exhaust Gas Purification

770298

View Details

TECHNICAL PAPER

Analysis in cyclic combustion Variation in a Lean Operating S.I. Engine

870547

View Details

TECHNICAL PAPER

Investigation of Cyclic Variation of IMEP Under Lean Burn Operation in Spark-Ignition Engine

972830

View Details

X