1990-02-01

Airborne Trajectory Analysis Derivation for Use in Accident Reconstruction 900367

This paper presents a unique derivation of airborne trajectory analysis equations from the classical physics equations of uniformly accelerated motion. These trajectory analysis equations are applied to an example problem with realistic real world values. A current widely utilized equation of human trajectory analysis ignores an important cosine function in the calculation of horizontal launch velocity. It is shown that ignoring this cosine function can yield significant error in calculations.
A graph is derived from published data on freefall sky diving. This graph can be referenced to adjust calculated velocities for the effects of air drag. It is shown that prior published data which has been widely utilized within the accident reconstruction profession, is inaccurate.
A simple method for the application of the derived equation and data to real world problems is outlined. The method illustrates that even when the angle of launch and first point of contact with the ground are unknown, good results for launch velocity can be obtained.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Reconstruction of Automobile/Pedestrian Accidents Using CATAPULT

940924

View Details

TECHNICAL PAPER

An Analytical Assessment of the Critical Speed Formula

970957

View Details

TECHNICAL PAPER

Trajectory Analysis for Collisions Involving Bicycles and Automobiles

900368

View Details

X