1991-10-01

Numerical Analysis of Fuel Vapor Concentration Fields in a Spark Ignition Engine 912347

A three dimensional numerical analysis is made of in-cylinder process in a typical four-cycle reciprocating spark ignition engine with an off-center intake valve. The conservation equations of mass, momentum and energy are solved on the basis of the finite volume method. The ordinary two-equation model is employed as the turbulence model. Fuel is injected into the intake port, and fuel vapor, fuel droplets and air flow into the cylinder through the valve clearance during the intake stroke. As the inlet boundary condition, the inflow velocity distribution, mass fractions of fuel vapor and droplets are given around the intake valve periphery. For simplicity, it is assumed that fuel droplets move with the gas and have the rates of evaporation which are estimated by the classical quasi-steady theory of a single droplet evaporation. Calculation is made from TDC of intake stroke to TDC of compression stroke at every 10 degrees crank angle. The temporal variations of velocity and gas phase fuel-air ratio profiles are predicted during both of intake and compression stroke. The effects of engine speed, fuel injection timing and duration, inflow velocity distribution on the mixture formation process are discussed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Major Origin of Cyclic Energy Conversion Variations in SI Engines: Cycle-by-Cycle Variations of the Equivalence Ratio and Residual Gas of the Initial Charge

941880

View Details

TECHNICAL PAPER

In-Cylinder Tumble Flow Characteristics and Implications for Fuel/Air Mixing in Direct Injection Gasoline Engines

2003-01-3104

View Details

TECHNICAL PAPER

Proposition of a Stratified Charge System by Using In-Cylinder Gas Motion

952455

View Details

X