1993-03-01

The Design of Flow-Through Diesel Oxidation Catalysts 930130

Progress made in reducing engine-out particulate emissions has prompted a revival in the design of flow-through oxidation catalysts for diesel engine applications. Effort in this area has focused primarily in the area of SOF control for the further reduction of particulate emissions. The work reported here covers some of the catalyst design parameters important for SOF and gas phase pollutant control. This is illustrated with both laboratory reactor and engine evaluation data for several formulary and operating parameters. Platinum-based catalysts are shown to be generally the most active, but they require treatments or additives to reduce the inherently high activity of platinum for the oxidation of SO2 present in the exhaust. The effect of additives and their loading on the oxidation activity of Pt/alumina for HC, CO, SOF and SO2 oxidation is discussed in detail and additives are identified which reduce SO2 oxidation with minimal effect on HC, CO or SOF oxidation activity. Aged performance for light duty applications is discussed for the best catalyst formulation that resulted from this work.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Diesel Catalysts for Low Particulate and Low Sulfate Emissions

920368

View Details

TECHNICAL PAPER

A Base Metal Oxide Catalyst for Reduction ofDiesel Particulates

932720

View Details

TECHNICAL PAPER

Diesel Oxidation Catalyst Application Strategies with Special Emphasis on Odour Reduction

942066

View Details

X