1994-03-01

Theoretical, Computational and Experimental Investigation of Helmholtz Resonators: One-Dimensional versus Multi-Dimensional Approach 940612

Helmholtz resonators are widely used for the noise reduction in vehicle induction and exhaust systems. This study investigates the effect of specific cavity dimensions of these resonators theoretically, computationally and experimentally. By considering one-dimensional wave propagation through distributed masses in the connector and cavity, a closed-form expression for the transmission loss of axisymmetric configurations is presented, thereby partially eliminating the limitations of a lumped-parameter analysis. Eight resonators of fixed neck geometry and cavity volume with length-to-diameter ratios of the volume varying from 0.32 to 23.92 are studied both computationally and experimentally. The first of the two computational approaches employed in the study implements a finite difference time domain technique to solve the nonlinear governing equations of one-dimensional compressible flow. It is shown that individual volume dimensions may have a considerable effect on resonator performance, particularly in reducing the primary resonance frequency compared to the classical result. The second computational approach investigates the effects of multi-dimensional physics by solving the three-dimensional wave equation with a boundary element method and comparing the results with those of the one-dimensional treatments.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Comparative Test Results of a Brushless DC Starter Generator vs. Traditional Starter Generator with Brushes

2009-01-3188

View Details

TECHNICAL PAPER

Interior Sound of Today's Electric Cars: Tonal Content, Levels and Frequency Distribution

2015-01-2367

View Details

TECHNICAL PAPER

An Electronically Tunable Resonator for Noise Control

2001-01-1615

View Details

X