Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Evaluating Network Security Configuration (NSC) Practices in Vehicle-Related Android Applications

2024-04-09
2024-01-2881
Android applications have historically faced vulnerabilities to man-in-the-middle attacks due to insecure custom SSL/TLS certificate validation implementations. In response, Google introduced the Network Security Configuration (NSC) as a configuration-based solution to improve the security of certificate validation practices. NSC was initially developed to enhance the security of Android applications by providing developers with a framework to customize network security settings. However, recent studies have shown that it is often not being leveraged appropriately to enhance security. Motivated by the surge in vehicular connectivity and the corresponding impact on user security and data privacy, our research pivots to the domain of mobile applications for vehicles. As vehicles increasingly become repositories of personal data and integral nodes in the Internet of Things (IoT) ecosystem, ensuring their security moves beyond traditional issues to one of public safety and trust.
Technical Paper

Open-loop Torque Control Strategy based on Constant Volume Instantaneous Combustion Model

2024-04-09
2024-01-2840
A model-based torque control strategy which is simple and easily adaptable to various types of engines is developed in this paper. A torque model is derived from constant-volume combustion model, and applications of the model to engine torque control problem are also discussed. As examples, the torque model is calibrated with experimental data collected from two different engines, and simulation and experimental results from the torque control strategy are presented as well.
Technical Paper

Robust Adaptive Control for Dual Fuel Injection Systems in Gasoline Engines

2024-04-09
2024-01-2841
The paper presents a robust adaptive control technique for precise regulation of a port fuel injection + direct injection (PFI+DI) system, a dual fuel injection configuration adopted in modern gasoline engines to boost performance, fuel efficiency, and emission reduction. Addressing parametric uncertainties on the actuators, inherent in complex fuel injection systems, the proposed approach utilizes an indirect model reference adaptive control scheme. To accommodate the increased control complexity in PFI+DI and the presence of additional uncertainties, a nonlinear plant model is employed, incorporating dynamics of the exhaust burned gas fraction. The primary objective is to optimize engine performance while minimizing fuel consumption and emissions in the presence of uncertainties. Stability and tracking performance of the adaptive controller are evaluated to ensure safe and reliable system operation under various conditions.
Technical Paper

Combustion Timing Control Based on First Modal Coefficients of Individual Cylinder Pressure Traces

2024-04-09
2024-01-2842
When an SI engine is equipped with individual cylinder pressure transducers, combustion timing of each cylinder can be precisely controlled by adjusting spark timing in real-time. In this paper, a novel method based on principal component analysis (PCA) is introduced to control the combustion timing with a significantly less computational burden than a conventional method.
Technical Paper

V2X Communication Protocols to Enable EV Battery Capacity Measurement: A Review

2024-04-09
2024-01-2168
The US EPA and the California Air Resources Board (CARB) require electric vehicle range to be determined according to the Society of Automotive Engineers (SAE) surface vehicle recommended practice J1634 - Battery Electric Vehicle Energy Consumption and Range Test Procedure. In the 2021 revision of the SAE J1634, the Short Multi-Cycle Test (SMCT) was introduced. The proposed testing protocol eases the chassis dynamometer test burden by performing a 2.1-hour drive cycle on the dynamometer, followed by discharging the remaining battery energy into a battery cycler to determine the Useable Battery Energy (UBE). Opting for a cycler-based discharge is financially advantageous due to the extended operating time required to fully deplete a 70-100kWh battery commonly found in Battery Electric Vehicles (BEVs).
Technical Paper

Maximum Pulling Force Calculation of Permanent Magnet Tractor Motors in Electric Vehicle Applications

2024-04-09
2024-01-2217
In electric vehicle applications, the majority of the traction motors can be categorized as Permanent Magnet (PM) motors due to their outstanding performance. As indicated in the name, there are strong permanent magnets used inside the rotor of the motor, which interacts with the stator and causes strong magnetic pulling force during the assembly process. How to estimate this magnetic pulling force can be critical for manufacturing safety and efficiency. In this paper, a full 3D magnetostatic model has been proposed to calculate the baseline force using a dummy non-slotted cylinder stator and a simplified rotor for less meshing elements. Then, the full 360 deg model is simplified to a half-pole model based on motor symmetry to save the simulation time from 2 days to 2 hours. A rotor position sweep was conducted to find the maximum pulling force position. The result shows that the max pulling force happens when the rotor is 1% overlapping with the stator core.
Technical Paper

Enhanced Longitudinal Vehicle Speed Control for an Autonomous Gas-Engine Vehicle: Improving Performance and Efficiency

2024-04-09
2024-01-2059
A linear parameter-varying model predictive control (LPVMPC) is proposed to enhance the longitudinal vehicle speed control of a gas-engine vehicle, with potential application in autonomous vehicles. To achieve this objective, an advanced vehicle dynamic model and a sophisticated fuel consumption model are derived, forming a control-oriented model for the proposed control system. The vehicle dynamic model accurately captures the motions of the tires and the vehicle body. The fuel consumption model incorporates new powertrain modes such as automatic engine stop/start, active fuel management, and deceleration fuel cut-off, etc. The performance of the proposed LPV-MPC is evaluated by comparing it to a PID controller. Both simulation tests and vehicle-in-the-loop tests demonstrate the superior performance of the proposed controller. The results indicate that the LPV-MPC provides improved longitudinal vehicle speed control and reduced fuel consumption.
Technical Paper

Characterization of Embedded Debris Particles on Crankshaft Bearings

2024-04-09
2024-01-2594
Crankshaft bearings function to maintain the lubrication oil films needed to support crankshaft journals in hydrodynamic regime of rotation. Discontinuous oil films will cause the journal-bearing couple to be in a mixed or boundary lubrication condition, or even a bearing seizure or a spun bearing. This condition may further force the crankshaft to break and an engine shutdown. Spun bearings have been identified to be one of the top reasons in field returned engines. Excessive investigations have found large, embedded hard debris particles on the bearings are inevitably the culprit of destroying continuity of the oil films. Those particles, in particular the suspicious steel residues, in the sizes of hundreds of micrometers, are large enough to cause oil film to break, but rather fine and challenging for materials engineers to characterize their metallurgical features. This article presents the methodology and steps of debris analyses on bearings at different stages of engine build.
Technical Paper

Advanced Engine Cooling System for a Gas-Engine Vehicle Part I: A New Coolant Flow Control During Cold Start

2024-04-09
2024-01-2414
In this paper, we present a novel algorithm designed to accurately trigger the engine coolant flow at the optimal moment, thereby safeguarding gas-engines from catastrophic failures such as engine boil. To achieve this objective, we derive models for crucial temperatures within a gas-engine, including the engine combustion wall temperature, engine coolant-out temperature, engine block temperature, and engine oil temperature. To overcome the challenge of measuring hard-to-measure signals such as engine combustion gas temperature, we propose the use of new intermediate parameters. Our approach utilizes a lumped parameter concept with a mean-value approach, enabling precise temperature prediction and rapid simulation. The proposed engine thermal model is capable of estimating temperatures under various conditions, including steady-state or transient engine performance, without the need for extra sensors.
Technical Paper

Extended Deep Learning Model to Predict the Electric Vehicle Motor Operating Point

2024-04-09
2024-01-2551
The transition from combustion engines to electric propulsion is accelerating in every coordinate of the globe. The engineers had strived hard to augment the engine performance for more than eight decades, and a similar challenge had emerged again for electric vehicles. To analyze the performance of the engine, the vector engine operating point (EOP) is defined, which is common industry practice, and the performance vector electric vehicle motor operating point (EVMOP) is not explored in the existing literature. In an analogous sense, electric vehicles are embedded with three primary components, e.g., Battery, Inverter, Motor, and in this article, the EVMOP is defined using the parameters [motor torque, motor speed, motor current]. As a second aspect of this research, deep learning models are developed to predict the EVMOP by mapping the parameters representing the dynamic state of the system in real-time.
Technical Paper

Estimating How Long In-Vehicle Tasks Take: Static Data for Distraction and Ease-of-Use Evaluations

2024-04-09
2024-01-2505
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?”
Technical Paper

Kinetic Model Development for Selective Catalytic Converter Integrated Particulate Filters

2024-04-09
2024-01-2631
To meet the stringent NOx and particulate emissions requirements of Euro 6 and China 6 standard, Selective Catalyst Reduction (SCR) catalyst integrated with wall flow particulate filter (SCR-DPF) has been found to be an effective solution for the exhaust aftertreatment systems of diesel engines. NOx is reduced by ammonia generated from urea injection while the filter effectively traps and burns the particulate matter periodically in a process called regeneration. The engine control unit (ECU) effectively manages urea injection quantity, timing and soot burning frequency for the stable functioning of the SCR-DPF without impacting drivability. To control the NOx reduction and particulate regeneration process, the control unit uses lookup tables generated from extensive hardware testing to get the current soot load and NOx slip information of SCR-DPF as a function of main exhaust state variables.
Technical Paper

Electric vehicle battery health aware DC fast-charging recommendation system

2024-04-09
2024-01-2604
DC fast charging (DCFC) also referred to as L3 charging, is the fastest charging technology to replenish the drivable range of an electric vehicle. DCFC provides the convenience of faster charging time compared to L1 and L2 at the expense of potentially increased battery health degradation. It is known to accelerate battery capacity fade leading to reduced range and lifetime of the EV battery. While there are active efforts and several means to reduce the downsides of DCFC at cell chemistry level, this trade-off is still an important consideration for most battery cells in automotive propulsion applications. Since DCFC is a customer driven technology, informing drivers of the trade-off of each DCFC event can potentially result in better outcomes for the EV battery life. Traditionally, the driver is advised to limit DCFC events without providing quantifiable metrics to inform their decisions during EV charging.
Technical Paper

Vehicle Yaw Dynamics Safety Analysis Methodology based on ISO-26262 Controllability Classification

2024-04-09
2024-01-2766
Complex chassis systems operate in various environments such as low-mu surfaces and highly dynamic maneuvers. The existing metrics for lateral motion hazard by Neukum [13] and Amberkar [17] have been developed and correlated to driver behavior against disturbances on straight line driving on a dry surface, but do not cover low-mu surfaces and dynamic driving scenarios which include both linear and nonlinear region of vehicle operation. As a result, an improved methodology for evaluating vehicle yaw dynamics is needed for safety analysis. Vehicle yaw dynamics safety analysis is a methodical evaluation of the overall vehicle controllability with respect to its yaw motion and change of handling characteristic.
Technical Paper

Dynamic Characterization of a Twin Plate Torque Converter Clutch During Controlled Slip

2024-04-09
2024-01-2715
This paper details testing for torque converter clutch (TCC) characterization during steady state and dynamic operation under controlled slip conditions on a dynamometer setup. The subject torque converter under test is a twin plate clutch with a dual stage turbine damper without a centrifugal pendulum absorber. An overview is provided of the dynamometer setup, hydraulic system and control techniques for regulating the apply pressure to the torque converter and clutch. To quantify the performance of the clutch in terms of control stability, pressure to torque relationship and the dynamic behavior during apply and release, a matrix of oil temperatures, output speeds, input torques, and clutch apply pressures were imposed upon the torque converter.
Technical Paper

Sound Transmission Loss through Front of Dash and Instrumental Panel

2024-04-09
2024-01-2349
The subsystem of front of dash (FOD) and instrument panel (IP) is a critical path to isolate the powertrain noise and road noise for vehicles. This subsystem mainly consists of sheet metal, dash mats, IP, and the components inside IP such as HVAC and wiring harness. To achieve certain level of cabin quietness, the sound transmission loss performance of this subsystem is usually used as a quantifier. In this paper, the sound transmission loss through the FOD and IP is investigated up to 10kHz, through both acoustic testing and numerical simulation. In the acoustic testing, the subsystem is cut from a vehicle and installed on the wall of two-rooms STL testing suite, with source room being reverberant and receiver room being anechoic. In the testing, various scenarios are measured to understand the contributions from different components.
Technical Paper

A 3-D CFD Investigation of Ball Bearing Weir Geometries and Design Considerations for Lubrication

2024-04-09
2024-01-2439
The study focuses on understanding the air and oil flow characteristics within a ball bearing during high-speed rotation, with a particular emphasis on optimizing frictional heat dissipation and oil lubrication methods. Computational fluid dynamics (CFD) techniques are employed to analyze the intricate three-dimensional airflow and oil flow patterns induced by the motion of rotating and orbiting balls within the bearing. A significant challenge in conducting three-dimensional CFD studies lies in effectively resolving the extremely thin gaps existing between the balls, races, and cages within the bearing assembly. In this research, we adopt the ball-bearing structured meshing strategy offered by Simerics-MP+ to meticulously address these micron-level clearances, while also accommodating the rolling and rotation of individual balls. Furthermore, we investigate the impact of different designs of the lubrication ports to channel oil to other locations compared to the ball bearings.
X