Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Sensory Approach to Develop Product Sound Quality Criterion

1999-05-17
1999-01-1818
Product sound quality is becoming increasingly critical in recent years. To help improve customer satisfaction and product quality, Delphi Automotive Systems has taken a proactive approach to address sound quality issues. The first step is to identify customers' expectations. This paper describes a sensory approach to develop sound quality criterion for a power product. To identify critical sound quality characteristics, a large number of sound samples were recorded. Jury (focus group) evaluation was conducted to identify the acceptance level and preference of each sample. Then, critical objective measures, and the criterion level of each measure, were identified via correlation analysis with subjective responses. This article presents a practitioner's point of view on how to apply sensory engineering method to engineering practice.
Technical Paper

A Statistical Approach for Correlation/Validation of Hot-Soak Terminal Temperature of a Vehicle Cabin CFD Model

2013-04-08
2013-01-0854
A Design for Six Sigma (DFSS) statistical approach is presented in this report to correlate a CFD cabin model with test results. The target is the volume-averaged hot-soak terminal temperature. The objective is to develop an effective correlation process for a simplified CFD cabin model so it can be used in practical design process. It is, however, not the objective in this report to develop the most accurate CFD cabin model that would be too expensive computationally at present to be used in routine design analysis. A 3-D CFD model of a vehicle cabin is the central part of the computer modeling in the development of automotive HVAC systems. Hot-soak terminal temperature is a thermal phenomenon in the cabin of a parked vehicle under the Sun when the overall heat transfer reaches equilibrium. It is often part of the simulation of HVAC system operation.
Technical Paper

A Study of Crash Rates for Vehicles with Advanced Crash Avoidance Features

2011-04-12
2011-01-0587
This paper describes how information available through the OnStar system represents a unique and powerful mechanism to assess field crash rates. Included within is a description of how vehicle and OnStar information may be gathered, organized and analyzed. The resulting data provides the capability to conducts various studies of field activity and/or events. In this case, a study was conducted to try to determine if certain vehicle equipment might have an impact on field crash rates. The process is exemplified via a description of a study conducted by GM OnStar in 2009. Two analyses were conducted comparing crash rates of selected vehicle models, with and without certain advanced safety sensing and warning features. Specifically, beginning in the 2008 Model Year, General Motors introduced Lane Departure Warning and Side Blind Zone Alert into US/Canada production. Utilizing data on crashes, drawn from OnStar Automatic Crash Response events, analyses of crash rates were conducted.
Technical Paper

A Study of Hybrid III 5th Percentile Female ATD Chest Accelerometers to Assess Sternum Compression Rate in Chest on Module Driver Out-of-Position Evaluations

2017-03-28
2017-01-1431
Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
Technical Paper

A Study of a Fast Light-Off Planar Oxygen Sensor Application for Exhaust Emissions Reduction

2000-03-06
2000-01-0888
It is well known that hydrocarbon reduction during a cold start is a major issue in achieving ultra low emissions standards. This paper describes one of the possible approaches for reducing the cold-start hydrocarbon emissions by using a fast “light-off” planar oxygen sensor. The goal of this study was to verify the operation characteristics of Delphi's fast “light-off” planar oxygen sensor's (INTELLEK OSP) operating characteristics and the closed-loop performance for achieving improved hydrocarbon control for stringent emission standards. Tests were conducted in open-loop and closed-loop mode under steady and transient conditions using a 1996 model year 2.4-liter DOHC in-line 4-cylinder engine with a close-coupled catalytic converter. Overall performance of the OSP showed relatively quick reaction time to reach the operating temperature.
Technical Paper

A System-Safety Process For By-Wire Automotive Systems

2000-03-06
2000-01-1056
Steer-by-wire and other “by-wire” systems (as defined in the paper) offer many passive and active safety advantages. To help ensure these advantages are achieved, a comprehensive system-safety process should be followed. In this paper, we review standard elements of system safety processes that are widely applied in several industries and describe the main elements of our proposed analysis process for by-wire systems. The process steps include: (i) creating a program plan to act as a blueprint for the process, (ii) performing a variety of hazard analysis and risk assessment tasks as specified in the program plan, (iii) designing and verifying a set of hazard controls that help mitigate risk, and (iv) summarizing the findings. Vehicle manufacturers and suppliers need to work together to create and follow such a process. A distinguishing feature of the process is the explicit linking of hazard controls to the hazards they cover, permitting coverage-based risk assessment.
Technical Paper

A Unified Framework of Adaptive Cruise Control for Speed Limit Follower and Curve Speed Control Function

2013-04-08
2013-01-0618
Today many vehicles are being developed with advanced computing and sensing technologies. These new technologies have contributed in enhancing driving safety and convenience. As an example, the Adaptive Cruise Control (ACC) can automatically adjust the vehicle speed to driver's set speed and maintain the driver-requested headway distance to the lead vehicle. In this paper, we further consider the automatic control of speed according to the road attributes, e.g., the speed limit and curve of the road. Two new features, ‘speed limit follower’ and ‘curve speed control’ algorithms, are proposed in this paper. These new features communicate with the conventional ACC system and control the vehicle speed while traveling across different curved roads and speed limit zones. These new features were developed as an independent function, so they can be integrated with any other existing ACC systems.
Technical Paper

A Verification Study for Cam Phaser Position Control using Robust Engineering Techniques

2001-03-05
2001-01-0777
This paper describes the verification and comparison of position control algorithms for a continuously-variable cam phaser. Robust Engineering techniques are used. Two non-linear PID control algorithms are designed to control cam phaser position. The first algorithm is a more complex control strategy while the second is a thrifted approach that seeks to reduce throughput requirements. An L18 orthogonal array is established with noise factors that affect the quality of cam phaser control. Using the orthogonal array, the number of experiment test points required to characterize the control algorithm response is reduced from 8,748 to thirty-six. The test points of the orthogonal array are investigated experimentally on a motored engine outfitted with cam phaser hardware. The desired and actual cam position data are compared and analyzed for all points in the orthogonal array.
Technical Paper

ASIL Decomposition: The Good, the Bad, and the Ugly

2013-04-08
2013-01-0195
ASIL decomposition is a method described in the ISO 26262 standard for the assignment of ASILs to redundant requirements. Although ASIL decomposition appears to have similar intent to the hardware fault tolerance concept of IEC 61508-2, ASIL decomposition is not intended to reduce ASIL assignments to hardware elements for random hardware failures, but instead focuses on functions and requirements in the context of systematic failures. Based on our participation in the development of the standard, the method has been applied in different ways in practice, not all of which are fully consistent with the intent of the standard. Two potential reasons that may result in the use of “modified” ASIL algebra include the need of OEMs to partition a system and specify subsystem requirements to suppliers and the need for designers to construct systems bottom up.
Technical Paper

ATD Neck Tension Comparisons for Various Sled Pulses

2002-12-02
2002-01-3324
The structure of the racecar has been the subject of much discussion with regard to crash safety. The stiffness of the structure, the amount of crush and the resulting deceleration were being judged, in some instances, as too stiff or not stiff enough for the driver. Much of this discussion centered on crash incidents for which no deceleration data were available from crash recorders (black boxes). In this paper, crash test dummy (Anthropomorphic Test Device ATD) results are compared for various idealized deceleration-time histories (deceleration pulses) that represent various structural crush characteristics. A crash velocity of 64.4 KPH (40 MPH) against a wall was used to represent a life threatening energy level.
Technical Paper

Accelerated Life Test Methodology for Li-Ion Batteries in Automotive Applications

2013-04-08
2013-01-1548
Determining Li-ion battery life through life modeling is an excellent tool in determining and estimating end-of-life performance. Achieving End-of-Life (EOL) can be challenging since it is difficult to achieve both cycle and calendar life during the same test without years of testing. The plan to correlate testing with the model included three (3) distinct temperature ranges, beginning with the four-Season temperature profile, an aggressive profile with temperatures in the 50 to 55°C range, and using a mid-temperature range (40-45°C) as a final comparison test. A high duty-cycle drive profile was used to cycle all of the batteries as quickly as possible to reach the one potential definition of EOL; significant increases in resistance or capacity fade.
Technical Paper

Achieving Breakthrough on Manufacturing Floor through Project-Based Organization

2009-10-06
2009-36-0333
Many companies around the world have adopted the lean thinking as their strategy to operate, in a global market where changes happen all the time. One foundation for the success of lean manufacturing appliance is the continuous improvement approach which has been considered even on company statements, or it can be also considered as part of the genetic code of any enterprise. However, if in one side the continuous improvement thinking, set people mind to look for opportunities of improvement all the time, on other hand these improvements are incremental and they do not have significant impact on company performance on both short-term and medium-term and sometimes, the activities performed by the employees are not sustainable due to the lack of structure to manage and follow up these activities.
Technical Paper

Adaptive Remote Vehicle Start Operation for Reduced Fuel Consumption

2011-04-12
2011-01-0045
Remote vehicle start systems are commonly available as an aftermarket accessory, and more recently, as a factory installed vehicle feature. These systems and their associated algorithms enable a user of the vehicle to remotely start the engine and/or other vehicle systems with the end goal of preconditioning the cabin environment, for example, if the user wishes to have the vehicle's interior heated or cooled before the user enters the vehicle. However, if the engine is remotely started for an extended period of time, the increased use of fuel, energy, and/or other resources may be greater than optimal or desired. Through the use of available vehicle sensors and enhanced algorithms, a system can be implemented which allows the passenger cabin to be heated or cooled to within a range of moderate temperatures, while reducing the resources utilized by the vehicle.
Technical Paper

Adjoint Method for Aerodynamic Shape Improvement

2012-04-16
2012-01-0167
The main objective of this work is to demonstrate the merits of the Adjoint method to provide comprehensive information for shape sensitivities and design directions to achieve low drag vehicle shapes. The adjoint method is applied to a simple 2D airfoil and a 3D vehicle shape. The discrete Adjoint equations in the flow solvers are used to investigate further potential shape improvements of the low drag vehicle shapes. The low drag vehicle used in this study was designed earlier using the conventional approach (i.e., extensive use of wind tunnel testing). The goal is to use the already low drag vehicle shape and reduce its drag even further using the adjoint methodology without using the time-consuming and the high cost of wind tunnel testing. In addition, the present study is intended to compare the results with the other computational techniques such as surface pressure gradients method.
Journal Article

Adjoint Method for Aerodynamic Shape Improvement in Comparison with Surface Pressure Gradient Method

2011-04-12
2011-01-0151
Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics. One specific goal of aerodynamic shape optimization is to predict the local shape sensitivities for aerodynamic forces. The availability of a reliable and efficient sensitivity analysis method will help to reduce the number of design iterations and the aerodynamic development costs. Among various shape optimization methods, the Adjoint Method has received much attention as an efficient sensitivity analysis method for aerodynamic shape optimization because it allows the computation of sensitivity information for a large number of shape parameters simultaneously.
Technical Paper

Advanced Canister Purge Algorithm with a Virtual [HC] sensor

2000-03-06
2000-01-0557
Both evaporative emissions and tailpipe emissions have been reduced by more than 90% from uncontrolled levels in state-of-the-art. However, now that the objective is to reach near-zero emission levels, the need for aggressive purging of the canister and fuel tank and the need for extremely precise control of engine Air/Fuel ratio (A/F) come into conflict. On-board diagnostics and the wide variation in operating conditions and fuel properties in the “real world” add to the challenge of resolving these conflicting requirements. An advanced canister purge algorithm has been developed which substantially eliminates the effect of canister purge on A/F control by estimating and compensating for the fuel and air introduced by the purge system. This paper describes the objectives and function of this algorithm and the validation of its performance.
Technical Paper

Advanced Engine Management Using On-Board Gasoline Partial Oxidation Reforming for Meeting Super-ULEV (SULEV) Emissions Standards

1999-08-17
1999-01-2927
This paper first reports on the benchmarking of a gasoline- fueled vehicle currently for sale in California that is certified to ULEV standards. Emissions data from this vehicle indicate the improvements necessary over current technology to meet SULEV tailpipe standards. Tests with this vehicle also show emissions levels with current technology under off-cycle conditions representative of real-world use. We then present Delphi's strategy of on-board partial oxidation (POx) reforming with gasoline-fueled, spark-ignition engines. On-board reforming provides a source of hydrogen fuel. Tests were run with bottled gas simulating the output of a POx reformer. Results show that an advanced Engine Management System with a small on-board reformer can provide very low tailpipe emissions both under cold start and warmed-up conditions using relatively small amounts of POx gas. The data cover both normal US Federal Test Procedure (FTP) conditions as well as more extreme, off-cycle operation.
Technical Paper

Advanced Field Study of Rollover Sensor Equipped Vehicles

2011-04-12
2011-01-1113
General Motors (GM), OnStar and the University of Michigan International Center for Automotive Medicine (ICAM) have formed a partnership to investigate and analyze real world rollover crashes involving GM vehicles equipped with rollover sensing technology and rollover-capable roof rail airbag systems. Candidates for the study are initially identified by OnStar, who receive notification of a rollover crash through the vehicle's Automatic Crash Response system. If the customer agrees to participate in the study, medical, vehicle and crash scene information are quickly gathered. This information is then reviewed by the medical and GM engineering communities to provide field relevant learning on injury mechanisms and vehicle system performance in rollover events. This paper provides a detailed review of the field case studies collected to date.
Journal Article

Aerodynamic Development of the 2011 Chevrolet Volt

2011-04-12
2011-01-0168
This paper presents some of the challenges and successful outcomes in developing the aerodynamic characteristics of the Chevrolet Volt, an electric vehicle with an extended-range capability. While the Volt's propulsion system doesn't directly affect its shape efficiency, it does make aerodynamics much more important than in traditional vehicles. Aerodynamic performance is the second largest contributor to electric range, behind vehicle mass. Therefore, it was critical to reduce aerodynamic drag as much as possible while maintaining the key styling cues from the original concept car. This presented a number of challenges during the development, such as evaluating drag due to underbody features, balancing aerodynamics with wind noise and cooling flow, and interfacing with other engineering requirements. These issues were resolved by spending hundreds of hours in the wind tunnel and running numerous Computational Fluid Dynamics (CFD) analyses.
Technical Paper

Air Cleaner Shell Noise Reduction with Finite Element Shape Optimization

1997-05-20
971876
In this paper, finite element shape optimization is used to determine the optimum air cleaner shape and rib design for low shell noise. Shape variables are used to vary the height and location of rib elements, as well as vary the shape of the air cleaner surfaces. The optimization code evaluates each design variation and selects a search direction that will reduce surface velocity. Sound power radiation is calculated for each optimized design using an acoustic code. Large reductions in shell noise were achieved by optimizing the shape of the air cleaner surface and rib design. Optimization of the rib pattern alone yielded a local optimization, as opposed to a global optimization that represented the best possible design.
X