Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Tomographic Camera System for Combustion Diagnostics in SI Engines

1995-02-01
950681
In order to facilitate the analysis of SI engine combustion phenomena, we have developed a fiber optic system which allows the observation of combustion in essentially standard engines. Optical access to the combustion chamber is achieved with micro-optic elements and optical fibers in the cylinder head gasket. Each fiber views a narrow cone of the combustion chamber and transmits the light seen within this acceptance cone to the detector and recorder unit. A large number of such fiber optic detectors have been incorporated in a cylinder head gasket and this multichannel system was arranged in a geometric configuration which allowed the reconstruction of the spatial flame intensity distribution within the observed combustion chamber cross-section. The spatial information was gained from the line-of-sight intensity signals by means of a tomographic reconstruction technique.
Technical Paper

Improvement of LEV/ULEV Potential of Fuel Efficient High Performance Engines

1992-02-01
920416
The combined requirement of achieving CAFE values between 32 to 38 mpg plus LEV/ULEV emission standards to comply with US legal requirements between 1995 and 2000 represents the most demanding challenge for engine engineering. Thus all possible methods of engine improvement towards fuel economy and emissions have to be considered. Besides using new ideas also the methods of engine development have to be modernized to cope with the challenge. The paper presents advanced combustion and exhaust gas aftertreatment systems which combine high power output, favourable torque characteristics and high fuel economy with the potential for obtaining LEV/ULEV emission values, as well as improved development techniques.
Technical Paper

The Influence of Inlet Port Design on the In-Cylinder Charge Mixing

1989-02-01
890842
A detailed investigation of the influence of intake port design on the in-cylinder flow structure during the intake and compression strokes, the mixing of the residual gas and a non-premixed intake charge, and the extent and pattern of charge inhomogenity near the time of combustion is described. The engine geometry is typical of the current lean-burn design and the study includes comparison of a helical (swirl) port and an idealized direct (no swirl) port designs. The results show marked dependence of the in-cylinder charge mixing characteristics on the intake port design. It is found that combinations of intake port design and manifold fuel injection timing produce favourably-stratified or irregularly-mixed charge distributions at the time of spark ignition. The consequences with respect to combustion characteristics are pointed out.
X