Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

A Distributed “Black Box” Audit Trail Design Specification for Connected and Automated Vehicle Data and Software Assurance

2020-10-14
Abstract Automotive software is increasingly complex and critical to safe vehicle operation, and related embedded systems must remain up to date to ensure long-term system performance. Update mechanisms and data modification tools introduce opportunities for malicious actors to compromise these cyber-physical systems, and for trusted actors to mistakenly install incompatible software versions. A distributed and stratified “black box” audit trail for automotive software and data provenance is proposed to assure users, service providers, and original equipment manufacturers (OEMs) of vehicular software integrity and reliability. The proposed black box architecture is both layered and diffuse, employing distributed hash tables (DHT), a parity system and a public blockchain to provide high resilience, assurance, scalability, and efficiency for automotive and other high-assurance systems.
Journal Article

Assuring Vehicle Update Integrity Using Asymmetric Public Key Infrastructure (PKI) and Public Key Cryptography (PKC)

2020-08-24
Abstract Over the past forty years, the Electronic Control Unit (ECU) technology has grown in both sophistication and volume in the automotive sector, and modern vehicles may comprise hundreds of ECUs. ECUs typically communicate via a bus-based network architecture to collectively support a broad range of safety-critical capabilities, such as obstacle avoidance, lane management, and adaptive cruise control. However, this technology evolution has also brought about risks: if ECU firmware is compromised, then vehicle safety may be compromised. Recent experiments and demonstrations have shown that ECU firmware is not only poorly protected but also that compromised firmware may pose safety risks to occupants and bystanders.
Journal Article

Data Privacy in the Emerging Connected Mobility Services: Architecture, Use Cases, Privacy Risks, and Countermeasures

2019-10-14
Abstract The rapid development of connected and automated vehicle technologies together with cloud-based mobility services is transforming the transportation industry. As a result, huge amounts of consumer data are being collected and utilized to provide personalized mobility services. Using big data poses serious challenges to data privacy. To that end, the risks of privacy leakage are amplified by data aggregations from multiple sources and exchanging data with third-party service providers, in face of the recent advances in data analytics. This article provides a review of the connected vehicle landscape from case studies, system characteristics, and dataflows. It also identifies potential challenges and countermeasures.
Journal Article

Vulnerability of FlexRay and Countermeasures

2019-05-23
Abstract The importance of in-vehicle network security has increased with an increase in automated and connected vehicles. Hence, many attacks and countermeasures have been proposed to secure the controller area network (CAN), which is an existent in-vehicle network protocol. At the same time, new protocols-such as FlexRay and Ethernet-which are faster and more reliable than CAN have also been proposed. European OEMs have adopted FlexRay as a control network that can perform the fundamental functions of a vehicle. However, there are few studies regarding FlexRay security. In particular, studies on attacks against FlexRay are limited to theoretical studies or simulation-based experiments. Hence, the vulnerability of FlexRay is unclear. Understanding this vulnerability is necessary for the application of countermeasures and improving the security of future vehicles. In this article, we highlight the vulnerability of FlexRay found in the experiments conducted on a real FlexRay network.
X