Refine Your Search

Topic

Search Results

Article

SAE WCX 2022: EV Cybersecurity threats

2022-04-14
An eye-opening Q&A with an impressive panel of experts lays out terrifying cyberattack scenarios including weaponizing EVs and region-wide blackouts.
Event

AeroTech®

2024-04-28
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech® Digital Summit

2024-04-28
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech® Volunteer Resources

2024-04-28
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

Attend - AeroTech®

2024-04-28
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Standard

Cybersecurity Guidebook for Cyber-Physical Vehicle Systems

2021-12-15
CURRENT
J3061_202112
This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and expanded on from, existing practices which are being implemented or reported in industry, government and conference papers. ...Other proprietary Cybersecurity development processes and standards may have been established to support a specific manufacturer’s development processes, and may not be comprehensively represented in this document, however, information contained in this document may help refine existing in-house processes, methods, etc. ...This recommended practice establishes a set of high-level guiding principles for Cybersecurity as it relates to cyber-physical vehicle systems. This includes: Defining a complete lifecycle process framework that can be tailored and utilized within each organization’s development processes to incorporate Cybersecurity into cyber-physical vehicle systems from concept phase through production, operation, service, and decommissioning.
Training / Education

Cybersecurity in the Energy Sector

Anytime
Anatomy and examples of cyberattacks on industrial control systems (ICS) and critical infrastructures (CI): In this course you will understand the importance of cybersecurity for Critical Infrastructure and you will know typical attack vectors, vulnerabilities and defense strategies. ...Decentralized Energy Systems Security: In this course you will know relevant technical countermeasures for cybersecurity. You will understand threats and solutions concerning data communication and network security in the energy systems.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. ...These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic.
Technical Paper

Cyber-security for Engine ECUs: Past, Present and Future

2015-09-01
2015-01-1998
In this paper, we outline past, present and future applications of automotive security for engine ECUs. Electronic immobilizers and anti-tuning countermeasures have been used for several years. Recently, OEMs and suppliers are facing more and more powerful attackers, and as a result, have introduced stronger countermeasures based on hardware security. Finally, with the advent of connected cars, it is expected that many things that currently require a physical connection will be done remotely in a near future. This includes remote diagnostics, reprogramming and engine calibration.
Technical Paper

Consequence-Driven Cybersecurity for High-Power Electric Vehicle Charging Infrastructure

2023-04-11
2023-01-0047
Cybersecurity of high-power charging infrastructure for electric vehicles (EVs) is critical to the safety, reliability, and consumer confidence in this publicly accessible technology. ...Cybersecurity of high-power charging infrastructure for electric vehicles (EVs) is critical to the safety, reliability, and consumer confidence in this publicly accessible technology. Cybersecurity vulnerabilities in high-power EV charging infrastructure may also present risks to broader transportation and energy-infrastructure systems. ...This paper details a methodology used to analyze and prioritize high-consequence events that could result from cybersecurity sabotage to high-power charging infrastructure. The highest prioritized events are evaluated under laboratory conditions for the severity of impact and the complexity of cybersecurity manipulation.
Technical Paper

Vehicle Cyber Engineering (VCE) Testbed with CLaaS (Cyber-Security Labs as a Service)

2024-04-09
2024-01-2796
The VCE Laboratory testbeds are connected with an Amazon Web Services (AWS) cloud-based Cyber-security Labs as a Service (CLaaS) system, which allows students and researchers to access the testbeds from any place that has a secure internet connection. ...VCE students are assigned predefined virtual machines to perform designated cyber-security experiments. The CLaaS system has low administrative overhead associated with experiment setup and management. ...VCE Laboratory CLaaS experiments have been developed for demonstrating man-in-the-middle cyber-security attacks from actual compromised hardware or software connected with the TestCube.
Journal Article

Using Delphi and System Dynamics for IoT Cybersecurity: Preliminary Airport Implications

2021-03-02
2021-01-0019
Day by day, airports adopt more IoT devices. However, airports are not exempt from possible failures due to malware’s proliferation that can abuse vulnerabilities. Computer criminals can access, corrupt, and extract information from individuals or companies. This paper explains the development of a propagation model, which started with a Delphi process. We discuss the preliminary implications for airports of the simulation model built from the Delphi recommendations.
Technical Paper

Wireless Charging for EV/HEV with Prescriptive Analytics, Machine Learning, Cybersecurity and Blockchain Technology: Ongoing and Future Trends

2019-04-02
2019-01-0790
Due to the rapid development in the technological aspect of the autonomous vehicle (AV), there is a compelling need for research in the field vehicle efficiency and emission reduction without affecting the performance, safety and reliability of the vehicle. Electric vehicle (EV) with rechargeable battery has been proved to be a practical solution for the above problem. In order to utilize the maximum capacity of the battery, a proper power management and control mechanism need to be developed such that it does not affect the performance, reliability and safety of vehicle. Different optimization techniques along with deterministic dynamic programming (DDP) approach are used for the power distribution and management control. The battery-operated electric vehicle can be recharged either by plug-in a wired connection or by the inductive mean (i.e. wirelessly) with the help of the electromagnetic field energy.
Standard

Cybersecurity Guidebook for Cyber-Physical Vehicle Systems

2016-01-14
HISTORICAL
J3061_201601
This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and expanded on from, existing practices which are being implemented or reported in industry, government and conference papers. ...Other proprietary Cybersecurity development processes and standards may have been established to support a specific manufacturer’s development processes, and may not be comprehensively represented in this document, however, information contained in this document may help refine existing in-house processes, methods, etc. ...This recommended practice establishes a set of high-level guiding principles for Cybersecurity as it relates to cyber-physical vehicle systems. This includes: Defining a complete lifecycle process framework that can be tailored and utilized within each organization’s development processes to incorporate Cybersecurity into cyber-physical vehicle systems from concept phase through production, operation, service, and decommissioning.
Standard

Permanently or Semi-Permanently Installed Diagnostic Communication Devices, Security Guidelines

2020-03-04
CURRENT
J3005-2_202003
The scope of the document is to define the cyber-security best practices to reduce interference with normal vehicle operation, or to minimize risk as to unauthorized access of the vehicle's control, diagnostic, or data storage system; access by equipment (i.e., permanently or semi-permanently installed diagnostic communication device, also known as dongle, etc.) which is either permanently or semi-permanently connected to the vehicle's OBD diagnostic connector, either SAE J1939-13, SAE J1962, or other future protocol; or hardwired directly to the in-vehicle network.
Technical Paper

UDS Security Access for Constrained ECUs

2022-03-29
2022-01-0132
Legacy electronic control units are, nowadays, required to implement cybersecurity measures, but they often do not have all the elements that are necessary to realize industry-standard cybersecurity controls. ...Legacy electronic control units are, nowadays, required to implement cybersecurity measures, but they often do not have all the elements that are necessary to realize industry-standard cybersecurity controls. For example, they may not have hardware cryptographic accelerators, segregated areas of memory for storing keys, or one-time programmable memory areas. ...While the UDS service $27 (Security Access) has a reputation for poor cybersecurity, there is nothing inherent in the way it operates which prevents a secure access-control from being implemented.
X