Refine Your Search

Topic

Search Results

Standard

Cybersecurity Guidebook for Cyber-Physical Vehicle Systems

2021-12-15
CURRENT
J3061_202112
This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and expanded on from, existing practices which are being implemented or reported in industry, government and conference papers. ...Other proprietary Cybersecurity development processes and standards may have been established to support a specific manufacturer’s development processes, and may not be comprehensively represented in this document, however, information contained in this document may help refine existing in-house processes, methods, etc. ...This recommended practice establishes a set of high-level guiding principles for Cybersecurity as it relates to cyber-physical vehicle systems. This includes: Defining a complete lifecycle process framework that can be tailored and utilized within each organization’s development processes to incorporate Cybersecurity into cyber-physical vehicle systems from concept phase through production, operation, service, and decommissioning.
Technical Paper

Cybersecurity in the Context of Fail-Operational Systems

2024-04-09
2024-01-2808
The development of highly automated driving functions (AD) recently rises the demand for so called Fail-Operational systems for native driving functions like steering and braking of vehicles. Fail-Operational systems shall guarantee the availability of driving functions even in presence of failures. This can also mean a degradation of system performance or limiting a system’s remaining operating period. In either case, the goal is independency from a human driver as a permanently situation-aware safety fallback solution to provide a certain level of autonomy. In parallel, the connectivity of modern vehicles is increasing rapidly and especially in vehicles with highly automated functions, there is a high demand for connected functions, Infotainment (web conference, Internet, Shopping) and Entertainment (Streaming, Gaming) to entertain the passengers, who should no longer occupied with driving tasks.
Technical Paper

Challenges in Integrating Cybersecurity into Existing Development Processes

2020-04-14
2020-01-0144
Strategies designed to deal with these challenges differ in the way in which added duties are assigned and cybersecurity topics are integrated into the already existing process steps. Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. ...Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. A cybersecurity development approach is frequently perceived as introducing impediments, that bear the risk of cybersecurity measures receiving a lower priority to reduce inconvenience. ...For an established development process and a team accustomed to this process, adding cybersecurity features to the product initially means inconvenience and reduced productivity without perceivable benefits.
Research Report

Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles

2024-04-22
EPR2024009
On the other hand, the potential risks associated with CAV deployment related to technical vulnerabilities are safety and cybersecurity issues that may arise from flawed hardware and software. Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles elaborates on these topics as unsettled cybersecurity and digital trust issues in CAVs and follows with recommendations to fill in the gaps in this evolving field. ...Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles elaborates on these topics as unsettled cybersecurity and digital trust issues in CAVs and follows with recommendations to fill in the gaps in this evolving field. ...This report also highlights the importance of establishing robust cybersecurity protocols and fostering digital trust in these vehicles to ensure safe and secure deployment in our modern transportation system.
Technical Paper

An Integrated View on Automotive SPICE, Functional Safety and Cyber-Security

2020-04-14
2020-01-0145
This increases the attractiveness of an attack on vehicles and thus introduces new risks for vehicle cybersecurity. Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. ...Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. Aware of this fact, the automotive industry has, therefore, recently taken multiple efforts in designing and producing safe and secure connected and automated vehicles. ...As the domain geared up for the cybersecurity challenges, they leveraged experiences from many other domains, but must face several unique challenges.
Journal Article

Using Delphi and System Dynamics for IoT Cybersecurity: Preliminary Airport Implications

2021-03-02
2021-01-0019
Day by day, airports adopt more IoT devices. However, airports are not exempt from possible failures due to malware’s proliferation that can abuse vulnerabilities. Computer criminals can access, corrupt, and extract information from individuals or companies. This paper explains the development of a propagation model, which started with a Delphi process. We discuss the preliminary implications for airports of the simulation model built from the Delphi recommendations.
Technical Paper

Challenges with the Introduction of X-By-Wire Technologies to Passenger Vehicles and Light Trucks in regards to Functional Safety, Cybersecurity and Availability

2023-04-11
2023-01-0581
Classic vehicle production had limitations in bringing the driving commands to the actuators for vehicle motion (engine, steering and braking). Steering columns, hydraulic tubes or steel cables needed to be placed between the driver and actuator. Change began with the introduction of e-gas systems. Mechanical cables were replaced by thin, electric signal wires. The technical solutions and legal standardizations for addressing the steering and braking systems, were not defined at this time. Today, OEMs are starting E/E-Architecture transformations for manifold reasons and now have the chance to remove the long hydraulic tubes for braking and the solid metal columns used for steering. X-by-wire is the way forward and allows for higher Autonomous Driving (AD) levels for automated driving vehicles. This offers new opportunities to design the vehicle in-cabin space. This paper will start with the introduction of x-by-wire technologies.
Standard

Cybersecurity Guidebook for Cyber-Physical Vehicle Systems

2016-01-14
HISTORICAL
J3061_201601
This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and expanded on from, existing practices which are being implemented or reported in industry, government and conference papers. ...Other proprietary Cybersecurity development processes and standards may have been established to support a specific manufacturer’s development processes, and may not be comprehensively represented in this document, however, information contained in this document may help refine existing in-house processes, methods, etc. ...This recommended practice establishes a set of high-level guiding principles for Cybersecurity as it relates to cyber-physical vehicle systems. This includes: Defining a complete lifecycle process framework that can be tailored and utilized within each organization’s development processes to incorporate Cybersecurity into cyber-physical vehicle systems from concept phase through production, operation, service, and decommissioning.
Technical Paper

Information Security Risk Management of Vehicles

2018-04-03
2018-01-0015
The results of this work is allowed to identify a number of cybersecurity threats of the automated security-critical automotive systems, which reduces the efficiency of operation, road safety and system safety. ...According to the evaluating criterion of board electronics, the presence of poorly-protected communication channels, the 75% of the researched modern vehicles do not meet the minimum requirements of cybersecurity due to the danger of external blocking of vital systems. The revealed vulnerabilities of the security-critical automotive systems lead to the necessity of developing methods for mechanical and electronic protection of the modern vehicle. ...The law of normal distribution of the mid-points of the expert evaluation of the cyber-security of a modern vehicle has been determined. Based on the system approach, ranking of the main cybersecurity treats is performed.
Technical Paper

Hypervisor Implementation in Vehicle Networks

2020-04-14
2020-01-1334
The hypervisor offers many benefits to the vehicle architecture, both operationally and with cybersecurity. The proposed mitigant provides the structure to partition the various VMs. This allows for the different functions to be managed within their own distinct VM. ...While the cybersecurity applications are numerous, there are also the operational benefits. The hypervisor is designed to not only manage the VMs, but also to increase the efficiency of these via resource management.
Magazine

Automotive Engineering: September 2021

2021-09-01
Editorial EV bafflers, surprises and ironies Altair honors weight-saving innovations Finding failure inside lithium-metal batteries GM puts its new 2023 Corvette V8 on a different 'plane' SAE Standards News New ISO-SAE 21434 for cybersecurity Supplier Eye Preparing for the new, faster product cadence 2022 Jeep Compass gets class-leading safety upgrades Toyota muscles-up 4-cylinder for revised 2022 GR 86 coupe Q&A Manufacturing consultant Laurie Harbour lays out the looming pressures on the auto-manufacturing supply base.
Magazine

Automotive Engineering: February 2017

2017-02-02
SAE Standards News VS committees fully engaged on cybersecurity. Honda's new 10-speed is a slick shifter SAE Level 3 'hand off' challenging AI researchers Lightweight door module aims to trim vehicle weight Exclusive first drive: Torotrak's V-Charge technology New 10-speed auto delights in 2017 Ford F-150 Power and more underscore 2018 Toyota Camry I.D.
Technical Paper

Enabling the security of global time in software-defined vehicles (SGTS, MACsec)

2024-07-02
2024-01-2978
., driver assistance functions, intrusion detection system, vehicle diagnostics, external device authentication during vehicle diagnostics, vehicle-to-grid and so on). The cybersecurity attacks targeting the global time result in false time, accuracy degradation, and denial of service as stated in IETF RFC 7384.
Training / Education

The Nature of Automated Vehicle Safety Will SAE Level 5 Ever Be Achieved?

The automated vehicle industry has been busy designing, developing, and deploying several self driving vehicles and services in the last few years. However, much of the outcomes and the overall outlook of the vehicle and services, such as robotaxis, are not great. Customers and stakeholders complain that the level of automation is low, mostly SAE Levels 1, 2, and very little of Level 3. It appears that Level 4 is far out in the horizon and many wonder if Level 5 is actually achievable.
Research Report

Unsettled Issues in Remote Operation for On-road Driving Automation

2021-12-15
EPR2021028
On-road vehicles equipped with driving automation features—where a human might not be needed for operation on-board—are entering the mainstream public space. However, questions like “How safe is safe enough?” and “What to do if the system fails?” persist. This is where remote operation comes in, which is an additional layer to the automated driving system where a human remotely assists the so-called “driverless” vehicle in certain situations. Such remote-operation solutions introduce additional challenges and potential risks as the entire vehicle-network-human now needs to work together safely, effectively, and practically. Unsettled Issues in Remote Operation for On-road Driving Automation highlights technical questions (e.g., network latency, bandwidth, cyber security) and human aspects (e.g., workload, attentiveness, situational awareness) of remote operation and introduces evolving solutions.
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
X