Refine Your Search

Topic

Search Results

Technical Paper

Cybersecurity in the Context of Fail-Operational Systems

2024-04-09
2024-01-2808
The development of highly automated driving functions (AD) recently rises the demand for so called Fail-Operational systems for native driving functions like steering and braking of vehicles. Fail-Operational systems shall guarantee the availability of driving functions even in presence of failures. This can also mean a degradation of system performance or limiting a system’s remaining operating period. In either case, the goal is independency from a human driver as a permanently situation-aware safety fallback solution to provide a certain level of autonomy. In parallel, the connectivity of modern vehicles is increasing rapidly and especially in vehicles with highly automated functions, there is a high demand for connected functions, Infotainment (web conference, Internet, Shopping) and Entertainment (Streaming, Gaming) to entertain the passengers, who should no longer occupied with driving tasks.
Technical Paper

Challenges in Integrating Cybersecurity into Existing Development Processes

2020-04-14
2020-01-0144
Strategies designed to deal with these challenges differ in the way in which added duties are assigned and cybersecurity topics are integrated into the already existing process steps. Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. ...Cybersecurity requirements often clash with existing system requirements or established development methods, leading to low acceptance among developers, and introducing the need to have clear policies on how friction between cybersecurity and other fields is handled. A cybersecurity development approach is frequently perceived as introducing impediments, that bear the risk of cybersecurity measures receiving a lower priority to reduce inconvenience. ...For an established development process and a team accustomed to this process, adding cybersecurity features to the product initially means inconvenience and reduced productivity without perceivable benefits.
Research Report

Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles

2024-04-22
EPR2024009
On the other hand, the potential risks associated with CAV deployment related to technical vulnerabilities are safety and cybersecurity issues that may arise from flawed hardware and software. Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles elaborates on these topics as unsettled cybersecurity and digital trust issues in CAVs and follows with recommendations to fill in the gaps in this evolving field. ...Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles elaborates on these topics as unsettled cybersecurity and digital trust issues in CAVs and follows with recommendations to fill in the gaps in this evolving field. ...This report also highlights the importance of establishing robust cybersecurity protocols and fostering digital trust in these vehicles to ensure safe and secure deployment in our modern transportation system.
Technical Paper

An Integrated View on Automotive SPICE, Functional Safety and Cyber-Security

2020-04-14
2020-01-0145
This increases the attractiveness of an attack on vehicles and thus introduces new risks for vehicle cybersecurity. Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. ...Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. Aware of this fact, the automotive industry has, therefore, recently taken multiple efforts in designing and producing safe and secure connected and automated vehicles. ...As the domain geared up for the cybersecurity challenges, they leveraged experiences from many other domains, but must face several unique challenges.
Technical Paper

Challenges with the Introduction of X-By-Wire Technologies to Passenger Vehicles and Light Trucks in regards to Functional Safety, Cybersecurity and Availability

2023-04-11
2023-01-0581
Classic vehicle production had limitations in bringing the driving commands to the actuators for vehicle motion (engine, steering and braking). Steering columns, hydraulic tubes or steel cables needed to be placed between the driver and actuator. Change began with the introduction of e-gas systems. Mechanical cables were replaced by thin, electric signal wires. The technical solutions and legal standardizations for addressing the steering and braking systems, were not defined at this time. Today, OEMs are starting E/E-Architecture transformations for manifold reasons and now have the chance to remove the long hydraulic tubes for braking and the solid metal columns used for steering. X-by-wire is the way forward and allows for higher Autonomous Driving (AD) levels for automated driving vehicles. This offers new opportunities to design the vehicle in-cabin space. This paper will start with the introduction of x-by-wire technologies.
Training / Education

The Nature of Automated Vehicle Safety Will SAE Level 5 Ever Be Achieved?

The automated vehicle industry has been busy designing, developing, and deploying several self driving vehicles and services in the last few years. However, much of the outcomes and the overall outlook of the vehicle and services, such as robotaxis, are not great. Customers and stakeholders complain that the level of automation is low, mostly SAE Levels 1, 2, and very little of Level 3. It appears that Level 4 is far out in the horizon and many wonder if Level 5 is actually achievable.
Research Report

Unsettled Issues in Remote Operation for On-road Driving Automation

2021-12-15
EPR2021028
On-road vehicles equipped with driving automation features—where a human might not be needed for operation on-board—are entering the mainstream public space. However, questions like “How safe is safe enough?” and “What to do if the system fails?” persist. This is where remote operation comes in, which is an additional layer to the automated driving system where a human remotely assists the so-called “driverless” vehicle in certain situations. Such remote-operation solutions introduce additional challenges and potential risks as the entire vehicle-network-human now needs to work together safely, effectively, and practically. Unsettled Issues in Remote Operation for On-road Driving Automation highlights technical questions (e.g., network latency, bandwidth, cyber security) and human aspects (e.g., workload, attentiveness, situational awareness) of remote operation and introduces evolving solutions.
Technical Paper

Cyber Security in the Automotive Domain – An Overview

2017-03-28
2017-01-1652
Driven by the growing internet and remote connectivity of automobiles, combined with the emerging trend to automated driving, the importance of security for automotive systems is massively increasing. Although cyber security is a common part of daily routines in the traditional IT domain, necessary security mechanisms are not yet widely applied in the vehicles. At first glance, this may not appear to be a problem as there are lots of solutions from other domains, which potentially could be re-used. But substantial differences compared to an automotive environment have to be taken into account, drastically reducing the possibilities for simple reuse. Our contribution is to address automotive electronics engineers who are confronted with security requirements. Therefore, it will firstly provide some basic knowledge about IT security and subsequently present a selection of automotive specific security use cases.
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
Magazine

Autonomous Vehicle Engineering: July 2020

2020-07-02
Editorial High noon for high-level autonomy The Navigator A fork in the road for the AV business The Electric, Autonomous Revolution Lifts Off Engineering the new generation of electric and hybrid vertical-take-off-and-landing vehicles at Wisk and Elroy Air. New SAE Standard for Automated-Driving Developers Developed in less than a year, SAE's new J3216 standard will impact traffic management, operations and safety for automated mobility. Making Data Logging, Replay and Prototyping More Efficient High levels of continuity and compatibility are vital to avoid interruptions in the development process - and reduce cost. Radar Death Star ELunewave's 3D-printed spherical antenna makes for fast, 360-degree single-snapshot readings that are claimed to beat the slower sweeps of conventional radar. The Case for FOTA in AV Data Security Firmware over-the-air data transmission helps OEMs drive secure vehicle autonomy.
Technical Paper

A Controller Area Network Bus Identity Authentication Method Based on Hash Algorithm

2021-07-14
2021-01-5077
With the development of vehicle intelligence and the Internet of Vehicles, how to protect the safety of the vehicle network system has become a focus issue that needs to be solved urgently. The Controller Area Network (CAN) bus is currently a very widely used vehicle-mounted bus, and its security largely determines the degree of vehicle-mounted information security. The CAN bus lacks adequate protection mechanisms and is vulnerable to external attacks such as replay attacks, modifying attacks, and so on. On the basis of the existing work, this paper proposes an authentication method that combines Hash-based Message Authentication Code (HMAC)-SHA256 and Tiny Encryption Algorithm (TEA) algorithms. This method is based on dynamic identity authentication in challenge/response made and combined with the characteristics of the CAN bus itself as it achieves the identity authentication between the gateway and multiple electronic control units (ECUs).
Technical Paper

Service Analysis of Autonomous Driving

2020-12-30
2020-01-5194
Autonomous driving represents the ultimate goal of future automobile development. As a collaborative application that integrates vehicles, road infrastructure, network and cloud, autonomous driving business requires a high-degree dynamic cooperation among multiple resources such as data, computing and communications that are distributed throughout the system. In order to meet the anticipated high demand for resources and performance requirements of autonomous driving, and to ensure the safety and comfort of the vehicle users and pedestrians, a top concern of autonomous driving is to understand the system requirements for resources and conduct an in-depth analysis of the autonomous driving business. In this context, this paper presents a comprehensive analysis of the typical business for autonomous driving and establishes an analysis model for five common capabilities, i.e. collection, transmission, intelligent computing, human-machine interaction (HMI), and security.
Journal Article

A Distributed “Black Box” Audit Trail Design Specification for Connected and Automated Vehicle Data and Software Assurance

2020-10-14
Abstract Automotive software is increasingly complex and critical to safe vehicle operation, and related embedded systems must remain up to date to ensure long-term system performance. Update mechanisms and data modification tools introduce opportunities for malicious actors to compromise these cyber-physical systems, and for trusted actors to mistakenly install incompatible software versions. A distributed and stratified “black box” audit trail for automotive software and data provenance is proposed to assure users, service providers, and original equipment manufacturers (OEMs) of vehicular software integrity and reliability. The proposed black box architecture is both layered and diffuse, employing distributed hash tables (DHT), a parity system and a public blockchain to provide high resilience, assurance, scalability, and efficiency for automotive and other high-assurance systems.
Journal Article

Vulnerability of FlexRay and Countermeasures

2019-05-23
Abstract The importance of in-vehicle network security has increased with an increase in automated and connected vehicles. Hence, many attacks and countermeasures have been proposed to secure the controller area network (CAN), which is an existent in-vehicle network protocol. At the same time, new protocols-such as FlexRay and Ethernet-which are faster and more reliable than CAN have also been proposed. European OEMs have adopted FlexRay as a control network that can perform the fundamental functions of a vehicle. However, there are few studies regarding FlexRay security. In particular, studies on attacks against FlexRay are limited to theoretical studies or simulation-based experiments. Hence, the vulnerability of FlexRay is unclear. Understanding this vulnerability is necessary for the application of countermeasures and improving the security of future vehicles. In this article, we highlight the vulnerability of FlexRay found in the experiments conducted on a real FlexRay network.
Journal Article

Data Privacy in the Emerging Connected Mobility Services: Architecture, Use Cases, Privacy Risks, and Countermeasures

2019-10-14
Abstract The rapid development of connected and automated vehicle technologies together with cloud-based mobility services is transforming the transportation industry. As a result, huge amounts of consumer data are being collected and utilized to provide personalized mobility services. Using big data poses serious challenges to data privacy. To that end, the risks of privacy leakage are amplified by data aggregations from multiple sources and exchanging data with third-party service providers, in face of the recent advances in data analytics. This article provides a review of the connected vehicle landscape from case studies, system characteristics, and dataflows. It also identifies potential challenges and countermeasures.
Journal Article

Assuring Vehicle Update Integrity Using Asymmetric Public Key Infrastructure (PKI) and Public Key Cryptography (PKC)

2020-08-24
Abstract Over the past forty years, the Electronic Control Unit (ECU) technology has grown in both sophistication and volume in the automotive sector, and modern vehicles may comprise hundreds of ECUs. ECUs typically communicate via a bus-based network architecture to collectively support a broad range of safety-critical capabilities, such as obstacle avoidance, lane management, and adaptive cruise control. However, this technology evolution has also brought about risks: if ECU firmware is compromised, then vehicle safety may be compromised. Recent experiments and demonstrations have shown that ECU firmware is not only poorly protected but also that compromised firmware may pose safety risks to occupants and bystanders.
X