Refine Your Search

Topic

Search Results

Book

Cybersecurity for Commercial Vehicles

2018-08-28
It delivers details on key subject areas including: • SAE International Standard J3061; the cybersecurity guidebook for cyber-physical vehicle systems • The differences between automotive and commercial vehicle cybersecurity. • Forensics for identifying breaches in cybersecurity. • Platooning and fleet implications. • Impacts and importance of secure systems for today and for the future. ...This book provides a thorough view of cybersecurity to encourage those in the commercial vehicle industry to be fully aware and concerned that their fleet and cargo could be at risk to a cyber-attack. ...It delivers details on key subject areas including: • SAE International Standard J3061; the cybersecurity guidebook for cyber-physical vehicle systems • The differences between automotive and commercial vehicle cybersecurity. • Forensics for identifying breaches in cybersecurity. • Platooning and fleet implications. • Impacts and importance of secure systems for today and for the future.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic.
Journal Article

Cybersecurity Considerations for Heavy Vehicle Event Data Recorders

2018-12-14
Abstract Trust in the digital data from heavy vehicle event data recorders (HVEDRs) is paramount to using the data in legal contests. Ensuring the trust in the HVEDR data requires an examination of the ways the digital information can be attacked, both purposefully and inadvertently. The goal or objective of an attack on HVEDR data will be to have the data omitted in a case. To this end, we developed an attack tree and establish a model for violating the trust needed for HVEDR data. The attack tree provides context for mitigations and also for functional requirements. A trust model is introduced as well as a discussion on what constitutes forensically sound data. The main contribution of this article is an attack tree-based model of both malicious and accidental events contributing to compromised event data recorder (EDR) data. A comprehensive list of mitigations for HVEDR systems results from this analysis.
Technical Paper

Research on Vehicle Cybersecurity Based on Dedicated Security Hardware and ECDH Algorithm

2017-09-23
2017-01-2005
Vehicle cybersecurity consists of internal security and external security. Dedicated security hardware will play an important role in car’s internal and external security communication. ...For certain AURIX MCU consisting of HSM, the experiment result shows that cheaper 32-bit HSM’s AES calculating speed is 25 times of 32-bit main controller, so HSM is an effective choice to realize cybersecurity. After comparing two existing methods that realize secure CAN communication, A Modified SECURE CAN scheme is proposed, and differences of the three schemes are analyzed.
Technical Paper

Identification and Verification of Attack-Tree Threat Models in Connected Vehicles

2022-12-22
2022-01-7087
As a result of the ever-increasing application of cyber-physical components in the automotive industry, cybersecurity has become an urgent topic. Adapting technologies and communication protocols like Ethernet and WiFi in connected vehicles yields many attack scenarios. ...Consequently, ISO/SAE 21434 and UN R155 (2021) define a standard and regulatory framework for automotive cybersecurity, Both documents follow a risk management-based approach and require a threat modeling methodology for risk analysis and identification. ...Initially, we transform cybersecurity guidelines to attack trees, and then we use their formal interpretations to assess the vehicle’s design.
Standard

CAN FD Data Link Layer

2022-09-08
CURRENT
J1939-22_202209
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Magazine

SAE Truck & Off-Highway Engineering: October 2018

2018-10-01
Quotes from COMVEC 2018 Industry leaders spoke extensively about all things autonomous-ADAS, big data, connectivity, cybersecurity, machine learning-at the annual SAE event. Here's some of what they had to say. Fuel-cell Class 8-take 2.0 With a longer-range and more-refined fuel cell-powered heavy-duty truck, Toyota aims to eventually eliminate emissions from trucks serving increasingly congested California ports. ...Editorial Bring innovation, disruption in-house Adding 3D printing to design, manufacturing processes Upstream devoted to truck cybersecurity threats Jacobs employs cylinder deactivation in HD engines to lower CO2, NOx Emissions reductions continue to disrupt CV industry Mercedes doubles down on electric vans and buses, considers fuel cells Off-road bus from Torsus transports to hard-to-reach places Q&A Perkins pursues plug-and-play connectivity
Magazine

Automotive Engineering: February 3, 2016

2016-02-03
Baking in protection With vehicles joining the Internet of Things, connectivity is making cybersecurity a must-have obligation for automotive engineers, from initial designs through end-of-life.
Magazine

SAE Truck & Off-Highway Engineering: October 2021

2021-10-07
Defending the heavy-vehicle cyber domain Cybersecurity experts explained at SAE COMVEC 2021 how they're preparing the next generation of thwarters to protect increasingly electrified, connected and automated trucks.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. ...This research successfully met the four requirements and demonstrated that using ZT principles in an on-vehicle network greatly improved the cybersecurity posture with manageable impact to system performance and deployment.
Magazine

Automotive Engineering: August 2017

2017-08-03
Is automotive ready for the inevitable? Cybersecurity experts talk defense strategies. Active Aero takes flight Reconfigurable "smart" aerodynamic aids are stretching performance-car envelopes in every direction.
Research Report

Impact of Electric Vehicle Charging on Grid Energy Buffering

2022-09-26
EPR2022022
Impact of Electric Vehicle Charging on Grid Energy Buffering discusses the unsettled issues and requirements needed to realize the potential of EV batteries for demand response and grid services, such as improved battery management, control strategies, and enhanced cybersecurity. Hybrid and fuel cell EVs have significant potential to act as “peakers” for longer duration buffering, and this approach has the potential to provide all the long-term energy buffering required by a VRE-intensive grid.
Magazine

SAE Truck & Off-Highway Engineering: August 2017

2017-08-03
Connected commercial vehicles bring cybersecurity to the fore Connectivity, automation and electrification will largely drive vehicle developments in the coming years, according to experts presenting at the revamped SAE COMVEC 17.
Standard

CAN FD Data Link Layer

2021-03-22
HISTORICAL
J1939-22_202103
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Standard

CAN FD Data Link Layer

2021-07-16
HISTORICAL
J1939-22_202107
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
X