Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Thermal Engineering of Mars Pathfinder MOx Chemical Cell

1996-07-01
961490
A thermal engineering analysis of the Mars Pathfinder MOx chemical cell was performed to determine the feasibility of raising the temperature of the soil and air cells to operating conditions using passive heating in the Mars environment. A critical 10° C rise in the soil sensor above the ground temperature is needed to activate the MOx chemical cell. Little relative spacecraft power is available to heat the instrument to its desired surface operating temperature. Realistic analytical bounds of thermal performance of the MOx chemical cell were predicted using a multi-discipline approach that consisted of materials, thermal, and structural analyses. The models accounted for solar heating, conduction to the ground, radiation to space, convection to the Mars atmosphere, and spacecraft power.
Technical Paper

An Environmental Sensor Technology Selection Process for Exploration

2005-07-11
2005-01-2872
In planning for Exploration missions and developing the required suite of environmental monitors, the difficulty lies in down-selecting a multitude of technology options to a few candidates with exceptional potential. Technology selection criteria include conventional analytical parameters (e.g., range, sensitivity, selectivity), operational factors (degree of automation, portability, required level of crew training, maintenance), logistical factors (size, mass, power, consumables, waste generation) and engineering factors such as complexity and reliability. Other more subtle considerations include crew interfaces, data readout and degree of autonomy from the ground control center. We anticipate that technology demonstrations designed toward these goals will be carried out on the International Space Station, the end result of which is a suite of techniques well positioned for deployment during Exploration missions.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
X