Refine Your Search

Topic

Search Results

Standard

Communications and Navigation Equipment

2022-03-21
CURRENT
ARP4102/6A
The equipment includes: a Communications: Ultra high frequency (UHF), very high frequency (VHF), and high frequency (HF) radios, cabin/service interphones, public address (PA), select call (SELCAL), call select (CALSEL), satellite communications (SATCOM), and controller pilot data link communications (CPDLC). b Navigation: Very high frequency omnidirectional range (VOR), tactical air navigation (TACAN), automatic direction finder (ADF), distance measuring equipment (DME), instrument landing system (ILS), markers (MKR), very low frequency (VLF), inertial navigation systems (INS), inertial reference systems (IRS), global navigation satellite system (GNSS), global positioning system (GPS), low range radio altimeter (LRRA), and attitude heading reference system (AHRS). c Weather radar. d Data link: Company, Air Traffic Control (ATC), transponders (Mode-S), controller pilot data link communications (CPDLC), and others.
Technical Paper

Minimum Crew Certification Human Factors Issues and Approaches

1996-10-01
965510
This can include such additions as Flight Management System (FMS) and Global Positioning System (GPS) interfacing to Autopilots and Flight Directors, Multi-Function Control and Display Units (MCDU), Satellite Communications (SatCom) and High Frequency (HF) Data Links, Heads-Up-Display (HUD) technologies, and even complete three-to-two pilot flight deck conversions.
Standard

CABIN COMMUNICATION SYSTEMS (CCS)

2010-11-19
CURRENT
ARINC746-6
This document provides general and specific design guidance for the development, installation, and desired operational capability of Cabin Communications Systems, including satellite communications, air-to-ground communications, and gatelink. Supplement 6 incorporates guidance for protection of personal information using methods consistent with the Payment Card Industry (PCI) Data Security Standard (DSS). The CCS characteristic provides encryption approaches for payment card information and suggestions for key management.
Standard

CNS/ATM AVIONICS ARCHITECTURES SUPPORTING NEXTGEN/SESAR CONCEPTS

2014-01-10
CURRENT
ARINC660B
This document identifies and describes the aircraft avionics capability necessary for operation in the evolving Communications Navigation Surveillance/Air Traffic Management (CNS/ATM) environment expected for the FAA NextGen program, Single European Sky ATM Research (SESAR) program and considerations of the Japan Collaborative Actions for Renovation of Air Traffic Systems (CARATS). These capabilities are intended to satisfy the industry's long-term CNS/ATM operational objectives.
Standard

CABIN EQUIPMENT INTERFACES PART 0 CABIN MANAGEMENT AND ENTERTAINMENT SYSTEM - OVERVIEW

2015-07-27
CURRENT
ARINC628P0-3
The purpose of this document is to provide an introduction and overview of the ARINC 628 series of Specifications. ARINC 628 defines equipment and installation standards for cabin equipment, which is generally defined as communication and entertainment equipment designed for passenger use. Part 0 provides the concepts and overview of ARINC 628 and descriptions of each individual part. Appendix B is written in briefing chart format to facilitate the user in preparing quick-reaction overhead projection-type presentations. Supplement 3 represents a summary of recent changes to Parts 1 through 9 of ARINC Specification 628.
Standard

CNS/ATM AVIONICS, FUNCTIONAL ALLOCATION AND RECOMMENDED ARCHITECTURES

1995-12-15
CURRENT
ARINC660
Defines a set of standard aircraft avionics architectures that support a cost-effective evolution to the fully operational CNS/ATM environment. These architectures are intended to meet near-term requirements (e.g., FANS-1, SCAT-1, etc.) and provide growth for supporting the full CNS/ATM function set. This standard represents broad airline consensus for developing avionics equipment providing CNS/ATM operating capabilities.
Standard

MEDIA INDEPENDENT AIRCRAFT MESSAGING (MIAM)

2016-07-20
CURRENT
ARINC841-3
The purpose of this document is to provide an industry standard for Media Independent Aircraft Messaging (MIAM) which permits the exchange of a large volume of data over Aircraft Communications Addressing and Reporting System (ACARS) subnetworks or broadband Internet Protocol (IP) subnetworks.
Standard

AIRCRAFT SOFTWARE COMMON CONFIGURATION REPORTING

2015-07-31
CURRENT
ARINC843
This standard defines a common configuration report format that can be retrieved from an aircraft for use by ground tools and maintenance personnel. Reports will be generated in Extensible Markup Language (XML) format and structured as defined by this document. Several optional elements and attributes are defined to allow flexibility for a given report. This standard provides aircraft manufacturers, regulatory agencies, and airlines a format standard for aircraft configuration reporting, and facilitates automated comparison of configuration data reports (e.g., authorized versus as flying, etc.).
Standard

DESIGN GUIDANCE FOR AVIONICS TEST EQUIPMENT

1993-01-15
CURRENT
ARINC608A
This standard is a top-level guidance standard intended for the design of Automatic Test Equipment (ATE). It includes the definition of hardware and software needed for analog and digital signal testing using a Test Unit Adapter common interface. This standard describes the overall ATE system concept as well as the definition of the specific elements of those systems.
Standard

AIRCRAFT COMMUNICATIONS ADDRESSING AND REPORTING SYSTEM (ACARS)

2012-02-24
CURRENT
ARINC724B-6
This standard describes the 724B version of the airborne components of ACARS, and is intended for use in conjunction with VHF radio equipment existing on the plane. This ACARS enhancement improves the ability of the system to provide air-to-ground and ground-to-air data communications.
Standard

CABIN EQUIPMENT INTERFACES PART 9 CABIN INTERFACE NETWORK (CIN)

2015-11-20
CURRENT
ARINC628P9-4
ARINC 628, Part 9 defines general architectural philosophy and aircraft infrastructure for the proper use and interface of various cabin information network related equipment. It specifies a generic on-board infrastructure with commercial server technology, high-speed data communication and exchange via wired and wireless LAN for a wide range of applications. Supplement 4 defines web-based interfaces for cabin control panels and recognizes current standards for commercial browsers and applications. It incorporates current network security practices, including reference to ARINC 842 Digital Certificates.
Standard

AUTOMATIC DEPENDENT SURVEILLANCE (ADS)

1993-06-30
CURRENT
ARINC745-2
This standard defines ADS system functions. It describes the ADS to ground-based application end-to-end operation. Includes a brief overview of the entire ADS system in order to aid the reader in understanding the ADS environment.
Standard

AIRCRAFT INTERFACE DEVICE (AID)

2014-07-15
CURRENT
ARINC759
This document sets forth the characteristics of an Aircraft Interface Device (AID) intended for installation in commercial aircraft. The intent of the document is to provide general and specific design guidance for the development of an AID for use in retrofit applications associated with aircraft typically developed between the mid-1970s through the 1990s, that primarily utilize ARINC 700 series avionics, and that interface with the aircraft via ARINC 429 and ARINC 717 unidirectional buses and Hi/Lo discrete signals. This document describes the desired operational capability of the AID and the standards necessary to ensure interchangeability.
Standard

CABIN EQUIPMENT INTERFACES PART 4A CABIN MANAGEMENT AND ENTERTAINMENT SYSTEM CABIN DISTRIBUTION SYSTEM DAISY CHAIN

2005-02-28
CURRENT
ARINC628P4A-3
Cabin equipment interfaces use a standardized wiring topology defined in Part 4A. This standard defines a standard CDS using a daisy chain wiring topology. This standard defines standard wiring, connectors and installation requirements for a passenger seat network, overhead video network, and cabin management equipment network. Electrical and fiber optic networks are covered.
Magazine

Aerospace & Defense Technology: October 2020

2020-10-01
The Role of Autonomous Unmanned Ground Vehicle Technologies in Defense Applications Information Warfare - Staying Protected at the Edge Designing Connectivity Solutions for an Electric Aircraft Future Redesigning the Systems Engineering Process to Speed Development of E-Propulsion Aircraft Four RF Technology Trends You Need to Know for Satellite Communication Device Design Manufacturer Reduces Risk and Improves Quality of Military Radar Receivers Instrumentation for Fabrication and Testing of High-Speed Single-Rotor and Compound-Rotor Systems Precision data acquisition is required to generate a comprehensive set of measurements of the blade surface pressures, pitch link loads, hub loads, rotor wakes and performance of high-speed single-rotor and compound-rotor systems to support the development of next-generation rotorcraft.
Standard

ACARS PROTOCOLS FOR AVIONIC END SYSTEMS

2017-11-29
CURRENT
ARINC619-5
The purpose of this document is to delineate, in an organized fashion, the protocols used by Aircraft Communication Addressing and Reporting System (ACARS) Management Units (MU) defined in ARINC Characteristic 724B and Communications Management Unit (CMU) defined in ARINC Characteristic 758, in their interactions with other onboard avionics equipment. The purpose of this document is to delineate, in an organized fashion, the protocols used by Aircraft Communication Addressing and Reporting System (ACARS) Management Units (MU) defined in ARINC Characteristic 724B and Communications Management Unit (CMU) defined in ARINC Characteristic 758, in their interactions with other onboard avionics equipment.
Standard

DESIGN GUIDANCE FOR INTEGRATED MODULAR AVIONICS

1997-11-07
CURRENT
ARINC651-1
This standard is a systems design guide for IMA. It provides guidance for the design and implementation of avionics equipment for new airplanes and retrofit installations. It is conceptual in nature and covers broad subjects of operational objectives, fault tolerance, hardware components, software design and certification issues.
Standard

CONSIDERATIONS FOR AVIONICS NETWORK DESIGN

1995-10-09
CURRENT
ARINC428
This standard provides the framework for developing a set of requirements for an avionics data bus network. This standard is intended to provide system-level considerations for the development of such a network, which may include a mix of standard data buses and private data buses.
X